Differentiable Oscillators in Recurrent Neural Networks for Gradient-Based Sequence Modeling

被引:0
|
作者
Otte, Sebastian [1 ]
Butz, Martin V. [1 ]
机构
[1] Univ Tubingen, Cognit Modeling Grp, Sand 14, D-72076 Tubingen, Germany
关键词
Recurrent neural networks (RNNs); Long short-term memories (LSTMs); Sequence modeling; Oscillating RNNs;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
引用
收藏
页码:745 / 746
页数:2
相关论文
共 50 条
  • [1] A Novel Fractional Gradient-Based Learning Algorithm for Recurrent Neural Networks
    Khan, Shujaat
    Ahmad, Jawwad
    Naseem, Imran
    Moinuddin, Muhammad
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (02) : 593 - 612
  • [2] A Novel Fractional Gradient-Based Learning Algorithm for Recurrent Neural Networks
    Shujaat Khan
    Jawwad Ahmad
    Imran Naseem
    Muhammad Moinuddin
    [J]. Circuits, Systems, and Signal Processing, 2018, 37 : 593 - 612
  • [3] Structural optimization by gradient-based neural networks
    Iranmanesh, A
    Kaveh, A
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1999, 46 (02) : 297 - 311
  • [4] Gradient-based PIV using neural networks
    I. Kimura
    Y. Susaki
    R. Kiyohara
    A. Kaga
    Y. Kuroe
    [J]. Journal of Visualization, 2002, 5 : 363 - 370
  • [5] Gradient-based PIV using neural networks
    Kimura, I
    Susaki, Y
    Kiyohara, R
    Kaga, A
    Kuroe, Y
    [J]. JOURNAL OF VISUALIZATION, 2002, 5 (04) : 363 - 370
  • [6] Robustness of Bayesian Neural Networks to Gradient-Based Attacks
    Carbone, Ginevra
    Wicker, Matthew
    Laurenti, Luca
    Patane, Andrea
    Bortolussi, Luca
    Sanguinetti, Guido
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [7] PHONE SEQUENCE MODELING WITH RECURRENT NEURAL NETWORKS
    Boulanger-Lewandowski, Nicolas
    Droppo, Jasha
    Seltzer, Mike
    Yu, Dong
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [8] A Gradient-Based Algorithm to Deceive Deep Neural Networks
    Xie, Tianying
    Li, Yantao
    [J]. NEURAL INFORMATION PROCESSING (ICONIP 2019), PT IV, 2019, 1142 : 57 - 65
  • [9] Gradient-based learning drives robust representations in recurrent neural networks by balancing compression and expansion
    Farrell, Matthew
    Recanatesi, Stefano
    Moore, Timothy
    Lajoie, Guillaume
    Shea-Brown, Eric
    [J]. NATURE MACHINE INTELLIGENCE, 2022, 4 (06) : 564 - +
  • [10] Gradient-based learning drives robust representations in recurrent neural networks by balancing compression and expansion
    Matthew Farrell
    Stefano Recanatesi
    Timothy Moore
    Guillaume Lajoie
    Eric Shea-Brown
    [J]. Nature Machine Intelligence, 2022, 4 : 564 - 573