Natural sand as a non-conventional catalyst for hydrogen production by methane thermo-catalytic decomposition

被引:18
|
作者
Yang, Li [1 ]
Liu, Fang [1 ]
He, Jianlong [1 ]
机构
[1] China Univ Min & Technol, Sch Elect & Power Engn, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbon capture; Methane decomposition; Natural sand; Catalytic activity; Characterization; ACTIVATED CARBONS; THERMOCATALYTIC DECOMPOSITION; FILAMENTOUS CARBON; FLUIDIZED-BED; CO2; CAPTURE; COAL; BLACKS; NANOTUBES; CRACKING; STORAGE;
D O I
10.1016/j.ijhydene.2019.03.163
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The thermo-catalytic decomposition of methane is considered a promising process for H-2 production in the carbon constrained world. A durable and cost-effective catalyst is required for practical methane decomposition processes within industrial applications; unfortunately, most catalysts suffer from extensive deactivation because of carbon deposition. To address this issue, this study assessed a low-cost, widely-available material - natural sand - as a non-conventional catalyst with the realization that it contained impurities such as iron oxides which may impart reaction activity. Its interesting performance in the methane decomposition reaction is reported herein and assessed relative to a potential cause of increasing catalytic activity with longer reaction times. One result of possible significance is the development of tubular carbon structures on the sand's surface that grew significantly in diameter and length with longer reaction times. High Resolution Transmission Electron Microscopy (HRTEM) imaging showed that this tubular carbon contained extensive humps on the external surface of the tube walls which grew in prominence with longer reaction times. The humps did not contain iron particles, in contrast to the heads of the tubes, and consisted of highly disordered graphitic layers. Previous research has pointed to the existence of free radicals or unsaturated bonding in these types of disordered layers, which can provide sites for catalytic reactions. Hence, it is proposed that the increasing prominence of the humps as the reaction time was increased, and by extension an increasing number of surface free radicals, was a possible cause for an increasing catalytic activity after the iron particles on the sand surface were covered with carbon and tube growth was initiated. These data are seen as potentially useful for devising alternative approaches to diminish catalytic deactivation during methane conversion to H-2. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:11625 / 11633
页数:9
相关论文
共 50 条
  • [1] HYDROGEN PRODUCTION BY THERMO-CATALYTIC METHANE DECOMPOSITION
    Wang, Hong Yan
    Lua, Aik Chong
    [J]. PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON INNOVATIVE MATERIALS FOR PROCESSES IN ENERGY SYSTEMS 2010 (IMPRES2010): FOR FUEL CELLS, HEAT PUMPS AND SORPTION SYSTEMS, 2010, : 107 - 113
  • [2] Artificial Neural Network Modeling of Thermo-catalytic Methane Decomposition for Hydrogen Production
    Alsaffar, May Ali
    Ghany, Mohamed Abdel Rahman Abdel
    Ali, Jamal Manee
    Ayodele, Bamidele Victor
    Mustapa, Siti Indati
    [J]. TOPICS IN CATALYSIS, 2021, 64 (5-6) : 456 - 464
  • [3] EPR Characteristics of Activated Carbon for Hydrogen Production by the Thermo-Catalytic Decomposition of Methane
    Wieckowski, A. B.
    Najder-Kozdrowska, L.
    Rechnia, P.
    Malaika, A.
    Krzyzynska, B.
    Kozlowski, M.
    [J]. ACTA PHYSICA POLONICA A, 2016, 130 (03) : 701 - 704
  • [4] Production of hydrogen from thermo-catalytic decomposition of methane in a fluidized bed reactor
    Ammendola, P.
    Chirone, R.
    Ruoppolo, G.
    Russo, G.
    [J]. CHEMICAL ENGINEERING JOURNAL, 2009, 154 (1-3) : 287 - 294
  • [5] Artificial Neural Network Modeling of Thermo-catalytic Methane Decomposition for Hydrogen Production
    May Ali Alsaffar
    Mohamed Abdel Rahman Abdel Ghany
    Jamal Manee Ali
    Bamidele Victor Ayodele
    Siti Indati Mustapa
    [J]. Topics in Catalysis, 2021, 64 : 456 - 464
  • [6] Application of Microscopy Technology in Thermo-catalytic Methane Decomposition to Hydrogen
    Mei, Irene Lock Sow
    Lock, S. S. M.
    Abdullah, Bawadi
    [J]. PROCEEDINGS OF THE 23RD SCIENTIFIC CONFERENCE OF MICROSCOPY SOCIETY MALAYSIA (SCMSM 2014), 2015, 1669
  • [7] Mathematical modelling and simulation of the thermo-catalytic decomposition of methane for economically improved hydrogen production
    Lumbers, Brock
    Agar, David W.
    Gebel, Joachim
    Platte, Frank
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (07) : 4265 - 4283
  • [8] Hydrogen production by thermo-catalytic decomposition of methane:: Regeneration of active carbons using CO2
    Pinilla, J. L.
    Suelves, I.
    Utrilla, R.
    Galvez, M. E.
    Lazaro, M. J.
    Moliner, R.
    [J]. JOURNAL OF POWER SOURCES, 2007, 169 (01) : 103 - 109
  • [9] Thermo-Catalytic Methane Decomposition for Hydrogen Production: Effect of Palladium Promoter on Ni-based Catalysts
    Mei, Irene Lock Sow
    Lock, S. S. M.
    Vo, Dai-Viet N.
    Abdullah, Bawadi
    [J]. BULLETIN OF CHEMICAL REACTION ENGINEERING AND CATALYSIS, 2016, 11 (02): : 191 - 199
  • [10] Thermo-Catalytic Methane Decomposition: A Review of State of the Art of Catalysts
    Ibrahim, Ahmed Aidid
    Al-Fatesh, Ahmed Sadeq
    Khan, Wasim Ullah
    Soliman, Mostafa Ali
    Otaibi, Raja Lafi A. L.
    Fakeeha, Anis Hamza
    [J]. JOURNAL OF THE CHEMICAL SOCIETY OF PAKISTAN, 2015, 37 (06): : 1269 - 1297