Atomic insights for Ag Interstitial/Substitutional doping into ZnIn2S4 nanoplates and intimate coupling with reduced graphene oxide for enhanced photocatalytic hydrogen production by water splitting

被引:82
|
作者
Gao, Yu [1 ]
Xu, Baotong [1 ]
Cherif, Mohamed [2 ]
Yu, He [1 ]
Zhang, Qingzhe [2 ]
Vidal, Francois [2 ]
Wang, Xiaofeng [1 ]
Ding, Fu [1 ,4 ]
Sun, Yaguang [1 ,4 ]
Ma, Dongling [2 ]
Bi, Yanfeng [3 ]
Xu, Zhenhe [1 ,2 ]
机构
[1] Shenyang Univ Chem Technol, Coll Mat & Engn, Shenyang 110142, Peoples R China
[2] Univ Quebec, Ctr Energie Mat & Telecommun, Inst Natl Rech Sci INRS, 1650 Blvd Lionel Boulet, Varennes, PQ J3X 1S2, Canada
[3] Liaoning Shihua Univ, Coll Chem Chem Engn & Environm Engn, Fushun 113001, Peoples R China
[4] Shenyang Univ Chem Technol, Key Lab Resource Chem Technol & Mat, Minist Educ, Shenyang 110142, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划; 加拿大自然科学与工程研究理事会;
关键词
Ag doping; Density functional theory; photocatalytic hydrogen production; reduced graphene oxide; ZnIn2S4; SOLID-SOLUTION PHOTOCATALYSTS; H-2; EVOLUTION; UP-CONVERSION; MICROSPHERES; GENERATION; NANOCOMPOSITES; NANOMATERIALS; SULFIDE;
D O I
10.1016/j.apcatb.2020.119403
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
For the purpose of realizing effective visible-light-driven photocatalysis, Ag-doped ZnIn2S4 nanoplates were synthesized in situ onto reduced graphene oxide (RGO) sheets (denoted as Ag:ZnIn2S4/RGO). The high photocatalytic activity is predominantly attributed to the doping effect of Ag+ ions into ZnIn2S4 crystal structure. Interstitial and substitutional doping modes help introduce both acceptor and donor states, as supported by our calculations. Such a doping greatly increases the carrier density and charge transport efficiency. Meanwhile, there is a well-contacted interface between Ag:ZnIn2S4 nanoplates and RGO that renders RGO an electron collector and transporter to effectively lengthen the lifetime of the photogenerated charge carriers. As expected, the optimum nanocomposite exhibits a high H-2 -production rate of 6343.86 mu mol g(-1) h(-1), about 10.3 and 4.0 times higher than that of pure ZnIn2S4 and 0.15 wt% Ag:ZnIn2S4 samples, respectively. Similarly importantly, the photocatalysts exhibit long-term stability (>= 100 h) under visible light irradiation.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] In situ controlled growth of ZnIn2S4 nanosheets on reduced graphene oxide for enhanced photocatalytic hydrogen production performance
    Zhou, Juan
    Tian, Guohui
    Chen, Yajie
    Meng, Xiangying
    Shi, Yunhan
    Cao, Xinrui
    Pan, Kai
    Fu, Honggang
    CHEMICAL COMMUNICATIONS, 2013, 49 (22) : 2237 - 2239
  • [2] Composites of Ag-Doped ZnIn2S4 Nanoplates with Graphitic Carbon Nitride and Reduced Graphene Oxide Nanosheets for Sunlight-Driven Hydrogen Production and Water Purification
    Dou, Yanting
    Liang, Zhiman
    Xu, Zhenhe
    Wang, Yuanjin
    Zheng, Jiqi
    Ma, Dongling
    Gao, Yu
    ACS APPLIED NANO MATERIALS, 2023, 6 (13) : 12537 - 12547
  • [3] Photocatalytic Water Splitting into Hydrogen Production with S-Scheme CoWO4/ZnIn2S4 Heterojunctions
    Yan A.
    Zhang J.
    Zhang X.
    Huang F.
    Gao Y.
    Zhao W.
    Zhang T.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2024, 52 (06): : 1820 - 1831
  • [4] ZnIn2S4/TiO2/Ag Composite Photocatalyst: Preparation and Performance for Hydrogen Production from Water Splitting
    Wang Lan
    Shi Hang
    Zhang Huan
    Chen Qi-Xin
    Jin Bao-Dan
    Zhang Hong-Zhong
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2021, 37 (09) : 1571 - 1578
  • [5] Reversible Stacking of 2D ZnIn2S4 Atomic Layers for Enhanced Photocatalytic Hydrogen Evolution
    Wu, Liqin
    Li, Mingjie
    Zhou, Biao
    Xu, Shuang
    Yuan, Ligang
    Wei, Jianwu
    Wang, Jiarong
    Zou, Shibing
    Xie, Weiguang
    Qiu, Yongcai
    Rao, Mumin
    Chen, Guangxu
    Ding, Liming
    Yan, Keyou
    SMALL, 2023, 19 (42)
  • [6] Reduction degree of reduced graphene oxide (RGO) dependence of photocatalytic hydrogen evolution performance over RGO/ZnIn2S4 nanocomposites
    Chen, Yongjuan
    Ge, Hao
    Wei, Liang
    Li, Zhaohui
    Yuan, Rusheng
    Liu, Ping
    Fu, Xianzhi
    CATALYSIS SCIENCE & TECHNOLOGY, 2013, 3 (07) : 1712 - 1717
  • [7] In situ fabrication of MIL-68(In)@ZnIn2S4 heterojunction for enhanced photocatalytic hydrogen production
    Tan, Mengxi
    Yu, Chengye
    Zeng, Hua
    Liu, Chuanbao
    Dong, Wenjun
    Meng, Huimin
    Su, Yanjing
    Qiao, Lijie
    Gao, Lei
    Lu, Qipeng
    Bai, Yang
    NANOSCALE, 2023, 15 (05) : 2425 - 2434
  • [8] Photothermocatalytic water splitting over Pt/ZnIn2S4 for hydrogen production without external heat
    Guo, Xiaomin
    Li, Jingwei
    Wang, Yujie
    Rui, Zebao
    CATALYSIS TODAY, 2022, 402 : 210 - 219
  • [9] Cu doping enhanced ZnIn2S4/TiO2(VO) Z-scheme heterojunction for efficient photocatalytic overall water splitting
    He, Yijun
    Lv, Tianping
    Zhou, Tong
    Liu, Bo
    Xiao, Bin
    Zheng, Hongshun
    Zi, Baoye
    Zhang, Jin
    Zhang, Yumin
    Zhang, Genlin
    Liu, Qingju
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 57 : 491 - 499
  • [10] Enwrapping ZnIn2S4 on vacancy-rich Nb2O5 nanoplates for enhanced photocatalytic hydrogen evolution
    Liu, Yong-Qi
    Yi, Wen-Jing
    Li, Chuan-Qi
    Du, Xin
    Liu, Zhong-Yi
    Yue, Xin-Zheng
    INORGANIC CHEMISTRY FRONTIERS, 2024, 11 (02): : 571 - 578