Statistical methods for identifying differentially expressed genes in RNA-Seq exeriments

被引:32
|
作者
Fang, Zhide [1 ]
Martin, Jeffrey [2 ,3 ]
Wang, Zhong [2 ,3 ,4 ]
机构
[1] Louisiana State Univ, Hlth Sci Ctr, Sch Publ Hlth, Biostat Program, New Orleans, LA 70112 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA
[3] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA
[4] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA
来源
CELL AND BIOSCIENCE | 2012年 / 2卷
关键词
QUANTIFICATION; NORMALIZATION; POWERFUL; TESTS; SAGE;
D O I
10.1186/2045-3701-2-26
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
RNA sequencing (RNA-Seq) is rapidly replacing microarrays for profiling gene expression with much improved accuracy and sensitivity. One of the most common questions in a typical gene profiling experiment is how to identify a set of transcripts that are differentially expressed between different experimental conditions. Some of the statistical methods developed for microarray data analysis can be applied to RNA-Seq data with or without modifications. Recently several additional methods have been developed specifically for RNA-Seq data sets. This review attempts to give an in-depth review of these statistical methods, with the goal of providing a comprehensive guide when choosing appropriate metrics for RNA-Seq statistical analyses.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Statistical methods for identifying differentially expressed genes in RNA-Seq experiments
    Zhide Fang
    Jeffrey Martin
    Zhong Wang
    [J]. Cell & Bioscience, 2
  • [2] Statistical methods on detecting differentially expressed genes for RNA-seq data
    Chen, Zhongxue
    Liu, Jianzhong
    Ng, Hon Keung Tony
    Nadarajah, Saralees
    Kaufman, Howard L.
    Yang, Jack Y.
    Deng, Youping
    [J]. BMC SYSTEMS BIOLOGY, 2011, 5
  • [3] A COMPARISON OF STATISTICAL METHODS FOR DETECTING DIFFERENTIALLY EXPRESSED GENES FROM RNA-SEQ DATA
    Kvam, Vanessa M.
    Lu, Peng
    Si, Yaqing
    [J]. AMERICAN JOURNAL OF BOTANY, 2012, 99 (02) : 248 - 256
  • [4] An algorithm for identifying differentially expressed genes in multiclass RNA-seq samples
    An, Jaehyun
    Kim, Kwangsoo
    Kim, Sun
    [J]. 2014 INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2014, : 40 - +
  • [5] Robustness of single-cell RNA-seq for identifying differentially expressed genes
    Yong Liu
    Jing Huang
    Rajan Pandey
    Pengyuan Liu
    Bhavika Therani
    Qiongzi Qiu
    Sridhar Rao
    Aron M. Geurts
    Allen W. Cowley
    Andrew S. Greene
    Mingyu Liang
    [J]. BMC Genomics, 24
  • [6] Variance component testing for identifying differentially expressed genes in RNA-seq data
    Yang, Sheng
    Shao, Fang
    Duan, Weiwei
    Zhao, Yang
    Chen, Feng
    [J]. PEERJ, 2017, 5
  • [7] Robustness of single-cell RNA-seq for identifying differentially expressed genes
    Liu, Yong
    Huang, Jing
    Pandey, Rajan
    Liu, Pengyuan
    Therani, Bhavika
    Qiu, Qiongzi
    Rao, Sridhar
    Geurts, Aron M.
    Cowley Jr, Allen W.
    Greene, Andrew S.
    Liang, Mingyu
    [J]. BMC GENOMICS, 2023, 24 (01)
  • [8] Performances evaluation of algorithms for identifying differentially expressed genes in RNA-seq data
    Wu, Chin-Ting
    Tsai, Mong-Hsun
    Lu, Tzu-Pin
    Lai, Liang-Chuan
    Chuang, Eric Y.
    [J]. CANCER RESEARCH, 2015, 75
  • [9] DEGseq: an R package for identifying differentially expressed genes from RNA-seq data
    Wang, Likun
    Feng, Zhixing
    Wang, Xi
    Wang, Xiaowo
    Zhang, Xuegong
    [J]. BIOINFORMATICS, 2010, 26 (01) : 136 - 138
  • [10] RNA-Seq identifies differentially expressed genes and mutations in oligodendrogliomas
    Klink, B.
    Szafranski, K.
    Valenzuela, J. A. Campos
    Schauer, S.
    Krex, D.
    Gerlach, E. M.
    Hackmann, K.
    Schackert, G.
    Kaderali, L.
    Platzer, M.
    Schrock, E.
    [J]. CELLULAR ONCOLOGY, 2012, 35 : S35 - S36