Privacy-Preserving Artificial Intelligence: Application to Precision Medicine

被引:0
|
作者
Vizitiu, Anamaria [1 ,2 ]
Nita, Cosmin Ioan [1 ,2 ]
Puiu, Andrei [1 ,2 ]
Suciu, Constantin [1 ,2 ]
Itu, Lucian Mihai [1 ,2 ]
机构
[1] Transilvania Univ Brasov, Dept Automat & Informat Technol, Brasov, Romania
[2] Siemens SRL, Corp Technol, Brasov, Romania
基金
欧盟地平线“2020”;
关键词
D O I
10.1109/embc.2019.8857960
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Motivated by state-of-the-art performances across a wide variety of areas, over the last few years Machine Learning has drawn a significant amount of attention from the healthcare domain. Despite their potential in enabling personalized medicine applications, the adoption of Deep Learning based solutions in clinical workflows has been hindered in many cases by the strict regulations concerning the privacy of patient health data. We propose a solution that relies on Fully Homomorphic Encryption, particularly on the MORE scheme, as a mechanism for enabling computations on sensitive health data, without revealing the underlying data. The chosen variant of the encryption scheme allows for the computations in the Neural Network model to be directly performed on floating point numbers, while incurring a reasonably small computational overhead. For feasibility evaluation, we demonstrate on the MNIST digit recognition task that Deep Learning can be performed on encrypted data without compromising the accuracy. We then address a more complex task by training a model on encrypted data to estimate the outputs of a whole-body circulation (WBC) model. These results underline the potential of the proposed approach to outperform current solutions by delivering comparable results to the unencrypted Deep Learning based solutions, in a reasonable amount of time. Lastly, the security aspects of the encryption scheme are analyzed, and we show that, even though the chosen encryption scheme favors performance and utility at the cost of weaker security, it can still be used in certain practical applications.
引用
收藏
页码:6498 / 6504
页数:7
相关论文
共 50 条
  • [1] Privacy-Preserving Artificial Intelligence Techniques in Biomedicine
    Torkzadehmahani, Reihaneh
    Nasirigerdeh, Reza
    Blumenthal, David B.
    Kacprowski, Tim
    List, Markus
    Matschinske, Julian
    Spaeth, Julian
    Wenke, Nina Kerstin
    Baumbach, Jan
    [J]. METHODS OF INFORMATION IN MEDICINE, 2022, 61 : E12 - E27
  • [2] Implementing Privacy-Preserving and Collaborative Industrial Artificial Intelligence
    Peres, Ricardo Silva
    Manta-Costa, Alexandre
    Barata, Jose
    [J]. IEEE ACCESS, 2023, 11 : 74579 - 74589
  • [3] Privacy-preserving artificial intelligence in healthcare: Techniques and applications
    Khalid, Nazish
    Qayyum, Adnan
    Bilal, Muhammad
    Al-Fuqaha, Ala
    Qadir, Junaid
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 158
  • [4] Novel technical and privacy-preserving technology for artificial intelligence in ophthalmology
    Lim, Jane S.
    Hong, Merrelynn
    Lam, Walter S. T.
    Zhang, Zheting
    Teo, Zhen Ling
    Liu, Yong
    Ng, Wei Yan
    Foo, Li Lian
    Ting, Daniel S. W.
    [J]. CURRENT OPINION IN OPHTHALMOLOGY, 2022, 33 (03) : 174 - 187
  • [5] Integrating Blockchain With Artificial Intelligence for Privacy-Preserving Recommender Systems
    Bosri, Rabeya
    Rahman, Mohammad Shahriar
    Bhuiyan, Md Zakirul Alam
    Al Omar, Abdullah
    [J]. IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2021, 8 (02): : 1009 - 1018
  • [6] Synthetic Medical Images for Robust, Privacy-Preserving Training of Artificial Intelligence Application to Retinopathy of Prematurity Diagnosis
    Coyner, Aaron S.
    Chen, Jimmy S.
    Chang, Ken
    Singh, Praveer
    Ostmo, Susan
    Chan, R. V. Paul
    Chiang, Michael F.
    Kalpathy-Cramer, Jayashree
    Campbell, J. Peter
    [J]. OPHTHALMOLOGY SCIENCE, 2022, 2 (02):
  • [7] Truly privacy-preserving federated analytics for precision medicine with multiparty homomorphic encryption
    David Froelicher
    Juan R. Troncoso-Pastoriza
    Jean Louis Raisaro
    Michel A. Cuendet
    Joao Sa Sousa
    Hyunghoon Cho
    Bonnie Berger
    Jacques Fellay
    Jean-Pierre Hubaux
    [J]. Nature Communications, 12
  • [8] Towards Explainable and Privacy-Preserving Artificial Intelligence for Personalisation in Autism Spectrum Disorder
    Mahmud, Mufti
    Kaiser, M. Shamim
    Rahman, Muhammad Arifur
    Wadhera, Tanu
    Brown, David J.
    Shopland, Nicholas
    Burton, Andrew
    Hughes-Roberts, Thomas
    Al Mamun, Shamim
    Ieracitano, Cosimo
    Tania, Marzia Hoque
    Moni, Mohammad Ali
    Islam, Mohammed Shariful
    Ray, Kanad
    Hossain, M. Shahadat
    [J]. UNIVERSAL ACCESS IN HUMAN-COMPUTER INTERACTION: USER AND CONTEXT DIVERSITY, UAHCI 2022, PT II, 2022, 13309 : 356 - 370
  • [9] Advancing COVID-19 diagnosis with privacy-preserving collaboration in artificial intelligence
    Xiang Bai
    Hanchen Wang
    Liya Ma
    Yongchao Xu
    Jiefeng Gan
    Ziwei Fan
    Fan Yang
    Ke Ma
    Jiehua Yang
    Song Bai
    Chang Shu
    Xinyu Zou
    Renhao Huang
    Changzheng Zhang
    Xiaowu Liu
    Dandan Tu
    Chuou Xu
    Wenqing Zhang
    Xi Wang
    Anguo Chen
    Yu Zeng
    Dehua Yang
    Ming-Wei Wang
    Nagaraj Holalkere
    Neil J. Halin
    Ihab R. Kamel
    Jia Wu
    Xuehua Peng
    Xiang Wang
    Jianbo Shao
    Pattanasak Mongkolwat
    Jianjun Zhang
    Weiyang Liu
    Michael Roberts
    Zhongzhao Teng
    Lucian Beer
    Lorena E. Sanchez
    Evis Sala
    Daniel L. Rubin
    Adrian Weller
    Joan Lasenby
    Chuansheng Zheng
    Jianming Wang
    Zhen Li
    Carola Schönlieb
    Tian Xia
    [J]. Nature Machine Intelligence, 2021, 3 : 1081 - 1089
  • [10] Advancing COVID-19 diagnosis with privacy-preserving collaboration in artificial intelligence
    Bai, Xiang
    Wang, Hanchen
    Ma, Liya
    Xu, Yongchao
    Gan, Jiefeng
    Fan, Ziwei
    Yang, Fan
    Ma, Ke
    Yang, Jiehua
    Bai, Song
    Shu, Chang
    Zou, Xinyu
    Huang, Renhao
    Zhang, Changzheng
    Liu, Xiaowu
    Tu, Dandan
    Xu, Chuou
    Zhang, Wenqing
    Wang, Xi
    Chen, Anguo
    Zeng, Yu
    Yang, Dehua
    Wang, Ming-Wei
    Holalkere, Nagaraj
    Halin, Neil J.
    Kamel, Ihab R.
    Wu, Jia
    Peng, Xuehua
    Wang, Xiang
    Shao, Jianbo
    Mongkolwat, Pattanasak
    Zhang, Jianjun
    Liu, Weiyang
    Roberts, Michael
    Teng, Zhongzhao
    Beer, Lucian
    Sanchez, Lorena E.
    Sala, Evis
    Rubin, Daniel L.
    Weller, Adrian
    Lasenby, Joan
    Zheng, Chuangsheng
    Wang, Jianming
    Li, Zhen
    Schonlieb, Carola
    Xia, Tian
    [J]. NATURE MACHINE INTELLIGENCE, 2021, 3 (12) : 1081 - 1089