Information Geometry and Estimation of Toeplitz Covariance Matrices

被引:0
|
作者
Balaji, Bhashyam [1 ]
Barbaresco, Frederic [2 ]
Decurninge, Alexis [2 ]
机构
[1] Def Res & Dev Canada, Radar Sensing & Exploitat Sect, Ottawa, ON K1A 0Z4, Canada
[2] Thales Air Syst, F-91470 Limours, France
关键词
BARYCENTERS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The estimation of covariance matrix is of fundamental importance in radar signal processing. Recent work has shown that information geometry provides a novel approach to estimating the covariance matrix. Prior work has shown that an information geometry inspired covariance matrix estimator provides significant gains (in SINR loss terms) over several standard estimators, such as the loaded sample matrix inversion (LSMI). In this paper, some techniques for computing the covariance matrix, inspired by information geometry, are presented. It is found that some algorithms provide superior performance when the number of samples is small.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Efficient nonparametric estimation of Toeplitz covariance matrices
    Klockmann, K.
    Krivobokova, T.
    [J]. BIOMETRIKA, 2024, 111 (03) : 843 - 864
  • [2] ESTIMATION OF LARGE TOEPLITZ COVARIANCE MATRICES AND APPLICATION TO SOURCE DETECTION
    Vinogradova, Julia
    Couillet, Romain
    Hachem, Walid
    [J]. 2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, : 2120 - 2124
  • [3] On the geometry of covariance matrices
    Ning, Lipeng
    Jiang, Xianhua
    Georgiou, Tryphon
    [J]. IEEE Signal Processing Letters, 2013, 20 (08) : 787 - 790
  • [4] EMBEDDING NONNEGATIVE DEFINITE TOEPLITZ MATRICES IN NONNEGATIVE DEFINITE CIRCULANT MATRICES, WITH APPLICATION TO COVARIANCE ESTIMATION
    DEMBO, A
    MALLOWS, CL
    SHEPP, LA
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (06) : 1206 - 1212
  • [5] Estimation of Toeplitz Covariance Matrices in Large Dimensional Regime With Application to Source Detection
    Vinogradova, Julia
    Couillet, Romain
    Hachem, Walid
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (18) : 4903 - 4913
  • [6] INVERSE OF SOME COVARIANCE MATRICES OF TOEPLITZ TYPE
    MENTZ, RP
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1976, 31 (03) : 426 - 437
  • [7] Information geometry of density matrices and state estimation
    Brody, Dorje C.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (25)
  • [8] Principal Subspace Estimation for Low-rank Toeplitz Covariance Matrices with Binary Sensing
    Fu, Haoyu
    Chi, Yuejie
    [J]. 2016 50TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2016, : 1344 - 1348
  • [9] ESTIMATION OF COVARIANCE MATRICES
    KOSHEVOY, VM
    [J]. RADIOTEKHNIKA I ELEKTRONIKA, 1986, 31 (10): : 1964 - 1974
  • [10] Sample Efficient Toeplitz Covariance Estimation
    Eldar, Yonina C.
    Li, Jerry
    Musco, Cameron
    Musco, Christopher
    [J]. PROCEEDINGS OF THE 2020 ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2020, : 378 - 397