Mapping Ratoon Rice Planting Area in Central China Using Sentinel-2 Time Stacks and the Phenology-Based Algorithm

被引:16
|
作者
Liu, Shishi [1 ,2 ]
Chen, Yuren [2 ]
Ma, Yintao [2 ]
Kong, Xiaoxuan [2 ]
Zhang, Xinyu [1 ,2 ]
Zhang, Dongying [3 ]
机构
[1] Huazhong Agr Univ, Macro Agr Res Inst, Wuhan 430070, Peoples R China
[2] Huazhong Agr Univ, Sch Resources & Environm, Wuhan 430070, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Hydropower & Informat Engn, Wuhan 430074, Peoples R China
关键词
Sentinel-2; rice; land cover mapping; phenology; crop planting area; PADDY RICE; MEKONG DELTA; SERIES; AGRICULTURE; INTENSIFICATION; SYSTEMS; SCALES; IMAGES; SOUTH;
D O I
10.3390/rs12203400
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Mapping rice cropping systems is important for grain yield prediction and food security assessments. Both single- and double-season rice are the dominant rice systems in central China. However, because of increasing labor shortages and high costs, there has been a gradual decline in double-season rice. Ratoon rice (RR) has been proposed as an alternative system that balances the productivity, cost, and labor requirements of rice cultivation. RR has been expanding in central China, encouraged by the improved cultivars, machinery, and favorable policies. However, to our knowledge, the distribution of RR has not been mapped with remote sensing techniques. This study developed a phenology-based algorithm to map RR at a 10 m resolution in Hubei Province, Central China, using dense time stacks of Sentinel-2 images (cloud cover <80%) in 2018. The key in differentiating RR from the other rice cropping systems is through the timing of maturity. We proposed to use two contrast vegetation indices to identify RR fields. The newly-developed yellowness index (YI) calculated with the reflectance of blue, green, and red bands was used to detect the ripening phase, and the enhanced vegetation index (EVI) was used to detect the green-up of the second-season crop to eliminate the misclassification caused by stubbles left in the field. The RR map demonstrated that RR was mainly distributed in the low alluvial plains of central and southern Hubei Province. The total planting area of RR in 2018 was 2225.4 km(2), accounting for 10.03% of the total area of paddy rice fields. The overall accuracy of RR, non-RR rice fields, and non-rice land cover types was 0.76. The adjusted overall accuracy for RR and non-RR was 0.91, indicating that the proposed YI and the phenology-based algorithm could accurately identify RR fields from the paddy rice fields.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [1] A phenology-based vegetation index for improving ratoon rice mapping using harmonized Landsat and Sentinel-2 data
    Chen, Yunping
    Hu, Jie
    Cai, Zhiwen
    Yang, Jingya
    Zhou, Wei
    Hu, Qiong
    Wang, Cong
    You, Liangzhi
    Xu, Baodong
    [J]. JOURNAL OF INTEGRATIVE AGRICULTURE, 2024, 23 (04) : 1164 - 1178
  • [2] A phenology-based vegetation index for improving ratoon rice mapping using harmonized Landsat and Sentinel-2 data
    Yunping Chen
    Jie Hu
    Zhiwen Cai
    Jingya Yang
    Wei Zhou
    Qiong Hu
    Cong Wang
    Liangzhi You
    Baodong Xu
    [J]. Journal of Integrative Agriculture, 2024, 23 (04) : 1164 - 1178
  • [3] Developing an Automatic Phenology-Based Algorithm for Rice Detection Using Sentinel-2 Time-Series Data
    Rad, Amir Moeini
    Ashourloo, Davoud
    Shahrabi, Hamid Salehi
    Nematollahi, Hamed
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (05) : 1471 - 1481
  • [4] A robust but straightforward phenology-based ginger mapping algorithm by using unique phenology features, and time-series Sentinel-2 images
    Di, Yuanyuan
    Dong, Jinwei
    Zhu, Fangfang
    Fu, Ping
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 198
  • [5] Mapping Paddy Rice Planting Area in Northeastern China Using Spatiotemporal Data Fusion and Phenology-Based Method
    Yin, Qi
    Liu, Maolin
    Cheng, Junyi
    Ke, Yinghai
    Chen, Xiuwan
    [J]. REMOTE SENSING, 2019, 11 (14)
  • [6] A new phenology-based method for mapping wheat and barley using time-series of Sentinel-2 images
    Ashourloo, Davoud
    Nematollahi, Hamed
    Huete, Alfredo
    Aghighi, Hossein
    Azadbakht, Mohsen
    Shahrabi, Hamid Salehi
    Goodarzdashti, Salman
    [J]. REMOTE SENSING OF ENVIRONMENT, 2022, 280
  • [7] Capability of Phenology-Based Sentinel-2 Composites for Rubber Plantation Mapping in a Large Area with Complex Vegetation Landscapes
    Li, Hongzhong
    Zhao, Longlong
    Sun, Luyi
    Li, Xiaoli
    Wang, Jin
    Han, Yu
    Liang, Shouzhen
    Chen, Jinsong
    [J]. REMOTE SENSING, 2022, 14 (21)
  • [8] Mapping tea plantation area using phenology algorithm, time-series Sentinel-2 and Landsat images
    Xia, Haoming
    Bian, Xiqing
    Pan, Li
    Li, Rumeng
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (09) : 2826 - 2846
  • [9] Capturing Coastal Dune Natural Vegetation Types Using a Phenology-Based Mapping Approach: The Potential of Sentinel-2
    Marzialetti, Flavio
    Giulio, Silvia
    Malavasi, Marco
    Sperandii, Marta Gaia
    Acosta, Alicia Teresa Rosario
    Carranza, Maria Laura
    [J]. REMOTE SENSING, 2019, 11 (12)
  • [10] Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine
    Dong, Jinwei
    Xiao, Xiangming
    Menarguez, Michael A.
    Zhang, Geli
    Qin, Yuanwei
    Thau, David
    Biradar, Chandrashekhar
    Moore, Berrien, III
    [J]. REMOTE SENSING OF ENVIRONMENT, 2016, 185 : 142 - 154