Comparison of three tillage systems in the wheat-maize system on carbon sequestration in the North China Plain

被引:57
|
作者
Zhang, Ming-Yuan [1 ,2 ]
Wang, Fu-Jun [1 ,2 ]
Chen, Fu [1 ,2 ]
Malemela, Maphorogetja P. [1 ,2 ]
Zhang, Hai-Lin [1 ,2 ]
机构
[1] China Agr Univ, Coll Agron & Biotechnol, Beijing 100193, Peoples R China
[2] Minist Agr, Key Lab Farming Syst, Beijing 100193, Peoples R China
关键词
Soil carbon storage; Soil carbon sequestration rate; Carbon footprint; Hidden carbon cost; No tillage; SOIL ORGANIC-CARBON; CONSERVATION TILLAGE; AGRICULTURE; EMISSIONS; MANAGEMENT; FLUX;
D O I
10.1016/j.jclepro.2013.04.033
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Whether farmland serves as a carbon (C) source or sink depends on the balance of soil organic carbon (SOC) sequestration and greenhouse gas (GHG) emissions. Tillage practices critically affect the SOC concentration, SOC sequestration rate and soil carbon storage (SCS). The objective of this paper is to assess the tillage effects on SOC sequestration, SCS and C footprint. Tillage experiments were established on a double cropping system of winter wheat (Triticum aestivum L) and summer corn (Zea mays L) in the North China Plain since 2001 with three treatments: no tillage (NT), rotary tillage (RT) and conventional tillage (CT). In order to assess SOC sequestration efficiency under different tillage systems, SCS, SOC sequestration rate, hidden carbon cost (HCC), indexes of sustainability (I-s) and C productivity (CP) were computed in this study. Results showed that the SCS increased with years of residue retention. The SCS attained the highest degree in 2007, which was about 25%-30% higher than that in 2004. The net SOC sequestration rate was the highest in NT and lowest in cc, while HCC was lowest under NT and highest under CT. The value of Is for CT, RT and NT treatments was 1.46, 1.79 and 1.88, respectively, and that of CP was 11.02, 12.79 and 10.57, respectively. Therefore, it can be concluded that NT provides a good option for increasing SOC sequestration for agriculture in the North China Plain. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:101 / 107
页数:7
相关论文
共 50 条
  • [1] Effects of tillage systems on greenhouse gas emission of wheat-maize double cropping system in North China Plain
    Wei, Yanhua
    Zhang, Erpeng
    Chen, Fu
    Zhang, Yu
    Zhang, Hailin
    [J]. NATURAL RESOURCES AND SUSTAINABLE DEVELOPMENT II, PTS 1-4, 2012, 524-527 : 2526 - 2532
  • [2] Organic manure as an alternative to crop residues for no-tillage wheat-maize systems in North China Plain
    Dai, Xiaoqin
    Li, Yunsheng
    Ouyang, Zhu
    Wang, Huimin
    Wilson, G. V.
    [J]. FIELD CROPS RESEARCH, 2013, 149 : 141 - 148
  • [3] Lowering carbon footprint of wheat-maize cropping system in North China Plain: Through microbial fertilizer application with adaptive tillage
    Gong, Huarui
    Li, Jing
    Sun, Mingxing
    Xu, Xiangbo
    Ouyang, Zhu
    [J]. JOURNAL OF CLEANER PRODUCTION, 2020, 268
  • [4] Dynamics in soil organic carbon of wheat-maize dominant cropping system in the North China Plain under tillage and residue management
    Zhao, Xin
    Virk, Ahmad Latif
    Ma, Shou-Tian
    Kan, Zheng-Rong
    Qi, Jian-Ying
    Pu, Chao
    Yang, Xiao-Guang
    Zhang, Hai-Lin
    [J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2020, 265
  • [5] Changes in soil organic carbon and nitrogen as affected by tillage and residue management under wheat-maize cropping system in the North China Plain
    Dikgwatlhe, Shadrack Batsile
    Chen, Zhong-Du
    Lal, Rattan
    Zhang, Hai-Lin
    Chen, Fu
    [J]. SOIL & TILLAGE RESEARCH, 2014, 144 : 110 - 118
  • [6] Yield and Potassium Balance in a Wheat-Maize Cropping System of the North China Plain
    He, Chun-e
    Ouyang, Zhu
    Tian, Zhen-rong
    Schaffer, Harwood D.
    [J]. AGRONOMY JOURNAL, 2012, 104 (04) : 1016 - 1022
  • [7] Effects of rotational tillage on soil properties and water use efficiency in a wheat-maize cropping system on north china plain
    Wang, Xianliang
    Wu, Juanjuan
    Zhang, Xiangcai
    Xia, Lianming
    [J]. International Agricultural Engineering Journal, 2019, 28 (01): : 200 - 207
  • [8] Effects of different tillage and fertilizer on soil quality under wheat-maize rotation in the North China Plain
    Zhang, Daijing
    Chen, Huiping
    Guo, Yuxin
    Hao, Xinru
    Fang, Ling
    Jiang, Lina
    Li, Chunxi
    [J]. LAND DEGRADATION & DEVELOPMENT, 2024, 35 (06) : 2122 - 2136
  • [9] Soil properties and crop yields after 11 years of no tillage farming in wheat-maize cropping system in North China Plain
    He Jin
    Li Hongwen
    Rasaily, Rabi G.
    Wang Qingjie
    Cai Guohua
    Su Yanbo
    Qiao Xiaodong
    Liu Lijin
    [J]. SOIL & TILLAGE RESEARCH, 2011, 113 (01): : 48 - 54
  • [10] Nitrogen dynamics and budgets in a winter wheat-maize cropping system in the North China Plain
    Liu, XJ
    Ju, XT
    Zhang, FS
    Pan, JR
    Christie, P
    [J]. FIELD CROPS RESEARCH, 2003, 83 (02) : 111 - 124