An Improved Multivariate Data Visualization Technique

被引:3
|
作者
Sun, Yang [1 ]
Yuan, Jinping [1 ]
Hu, Yanli [1 ]
Xiao, Weidong [1 ]
机构
[1] Natl Univ Def Technol, Dept Informat Syst & Management, Changsha, Hunan, Peoples R China
关键词
D O I
10.1109/ICINFA.2008.4608245
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the heavily increase of information cognitive burden, it is urgent for us to find effective visualization tools to grasp the abundant multidimensional and multivariate information in the science, engineering and commerce fields. Star Coordinates is a traditional multivariate data visualization technique, with some limitations, e.g. the loss of information, the poor result of visualization and the complexity of manual configuration of dimension axis. Advanced Star Coordinates (ASC), which addresses these drawbacks previous, is proposed in this work. ASC uses the diameter, but not the radius, as the dimension axis, and designs the dimension configuration strategy to optimize the order and angle of the dimension axes and project the multidimensional information object to low dimension visual space. Our experiment result tells that the dimension reduction algorithm is of great efficiency. Dimension configuration strategy reduces users' operation burden greatly and helps exploring the connotative characteristics of the multidimensional information aggregation quickly and exactly. The visualization result is easily understandable and expresses the dimension distribution information effectively, which is helpful for user to view the multidimensional data and to discover the implicit information in knowledge discovery process.
引用
收藏
页码:1525 / 1530
页数:6
相关论文
共 50 条
  • [1] An improved diversity visualization system for multivariate data
    Mee Chin Wee
    [J]. Journal of Visualization, 2017, 20 : 163 - 179
  • [2] An improved diversity visualization system for multivariate data
    Wee, Mee Chin
    [J]. JOURNAL OF VISUALIZATION, 2017, 20 (01) : 163 - 179
  • [3] Adaptable Radial Axes Plots for Improved Multivariate Data Visualization
    Rubio-Sanchez, M.
    Sanchez, A.
    Lehmann, D. J.
    [J]. COMPUTER GRAPHICS FORUM, 2017, 36 (03) : 389 - 399
  • [4] Kaleidomaps: A new technique for the visualization of multivariate time-series data
    Bale, Kim
    Chapman, Paul
    Barraclough, Nick
    Purdy, Jon
    Aydin, Nizamettin
    Dark, Paul
    [J]. Information Visualization, 2007, 6 (02) : 155 - 167
  • [5] Visualization of Multivariate Metabolomic Data
    AA Ji-ye
    [J]. Chinese Herbal Medicines, 2011, 3 (04) : 285 - 289
  • [6] On the Visualization of Hierarchical Multivariate Data
    Zheng, Boyan
    Sadlo, Filip
    [J]. 2021 IEEE 14TH PACIFIC VISUALIZATION SYMPOSIUM (PACIFICVIS 2021), 2021, : 136 - 145
  • [7] Multivariate visualization of particle data
    Liang Zhou
    Daniel Weiskopf
    [J]. The European Physical Journal Special Topics, 2019, 227 : 1741 - 1755
  • [8] Multivariate visualization of particle data
    Zhou, Liang
    Weiskopf, Daniel
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2019, 227 (14): : 1741 - 1755
  • [9] Lattice: Multivariate Data Visualization with R
    Cheshire, James
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2010, 173 : 275 - 276
  • [10] Multivariate spatial data visualization: a survey
    Xiangyang He
    Yubo Tao
    Qirui Wang
    Hai Lin
    [J]. Journal of Visualization, 2019, 22 : 897 - 912