Incorporating Safety Into Parametric Dynamic Movement Primitives

被引:6
|
作者
Kim, Hyoin [1 ,2 ]
Seo, Hoseong [1 ,2 ]
Choi, Seungwon [1 ,2 ]
Tomlin, Claire J. [3 ]
Kim, H. Jin [1 ,2 ]
机构
[1] Seoul Natl Univ, Mech & Aerosp Engn Dept, Seoul 151744, South Korea
[2] Seoul Natl Univ, Automat & Syst Res Inst, Seoul 151744, South Korea
[3] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
关键词
Learning from demonstration; motion and path planning; manipulation planning;
D O I
10.1109/LRA.2019.2900762
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Parametric dynamic movement primitives (PDMPs) are powerful motion representation algorithms, which encode multiple demonstrations and generalize them. As an online trajectory from PDMPs emulates the provided demonstrations, managing the safety guarantee of the demonstrations for a given scenario is an important issue. This letter presents a process to manage the demonstration set in PDMPs when some demonstrations are poor in terms of safety. Our proposed process distinguishes safe motion primitives from unsafe ones. In order to establish a criterion for determining whether a motion is safe or not, we calculate the safe region of the PDMPs parameters called style parameters using an optimization technique. In the optimization formulation, we calculate the unsafe style parameters that produce the closest motion to the unsafe region of the state space. By eliminating unsafe demonstrations with the parameters based on the safety criterion, and replacing them with new safe ones, we incorporate safety in the PDMPs framework. Simulation and experimental results validate that the proposed process can expand the motion primitives in the PDMPs framework to the new environmental settings by efficiently utilizing the previous demonstrations.
引用
收藏
页码:2260 / 2267
页数:8
相关论文
共 50 条
  • [1] Compliant Parametric Dynamic Movement Primitives
    Ugur, Emre
    Girgin, Hakan
    ROBOTICA, 2020, 38 (03) : 457 - 474
  • [2] Learning parametric dynamic movement primitives from multiple demonstrations
    Matsubara, Takamitsu
    Hyon, Sang-Ho
    Morimoto, Jun
    NEURAL NETWORKS, 2011, 24 (05) : 493 - 500
  • [3] Learning Parametric Dynamic Movement Primitives from Multiple Demonstrations
    Matsubara, Takamitsu
    Hyon, Sang-Ho
    Morimoto, Jun
    NEURAL INFORMATION PROCESSING: THEORY AND ALGORITHMS, PT I, 2010, 6443 : 347 - +
  • [4] Learning and Generalizing Cooperative Manipulation Skills Using Parametric Dynamic Movement Primitives
    Kim, Hyoin
    Oh, Changsuk
    Jang, Inkyu
    Park, Sungyong
    Seo, Hoseong
    Kim, H. Jin
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2022, 19 (04) : 3968 - 3979
  • [5] Dynamic Movement Primitives based Parametric Gait Model for Lower Limb Exoskeleton
    Ma, Wenhao
    Huang, Rui
    Chen, Qiming
    Song, Guangkui
    Li, Cong
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 3857 - 3862
  • [6] Dynamic Movement Primitives for Human Movement Recognition
    Pehlivan, Alp Burak
    Oztop, Erhan
    IECON 2015 - 41ST ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2015, : 2178 - 2183
  • [7] Sparse Control for Dynamic Movement Primitives
    Wensing, Patrick M.
    Slotine, Jean-Jacques
    IFAC PAPERSONLINE, 2017, 50 (01): : 10114 - 10121
  • [8] Modified dynamic movement primitives for joining movement sequences
    Kulvicius, Tomas
    Ning, KeJun
    Tamosiunaite, Minija
    Woergoetter, Florentin
    2011 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2011, : 2275 - 2280
  • [9] Towards Reversible Dynamic Movement Primitives
    Iturrate, Inigo
    Sloth, Christoffer
    Kramberger, Aljaz
    Petersen, Henrik Gordon
    Ostergaard, Esben Hallundbaek
    Savarimuthu, Thiusius Rajeeth
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 5063 - 5070
  • [10] Compound Movement Recognition Using Dynamic Movement Primitives
    Kordia, Ali H.
    Melo, Francisco S.
    PROGRESS IN ARTIFICIAL INTELLIGENCE (EPIA 2021), 2021, 12981 : 456 - 468