Machine learning based early warning system enables accurate mortality risk prediction for COVID-19

被引:198
|
作者
Gao, Yue [1 ,2 ]
Cai, Guang-Yao [1 ,2 ]
Fang, Wei [3 ]
Li, Hua-Yi [1 ,2 ]
Wang, Si-Yuan [1 ,2 ]
Chen, Lingxi [4 ]
Yu, Yang [1 ,2 ]
Liu, Dan [1 ,2 ]
Xu, Sen [1 ,2 ]
Cui, Peng-Fei [1 ,2 ]
Zeng, Shao-Qing [1 ,2 ]
Feng, Xin-Xia [5 ]
Yu, Rui-Di [1 ,2 ]
Wang, Ya [1 ,2 ]
Yuan, Yuan [1 ,2 ]
Jiao, Xiao-Fei [1 ,2 ]
Chi, Jian-Hua [1 ,2 ]
Liu, Jia-Hao [1 ,2 ]
Li, Ru-Yuan [1 ,2 ]
Zheng, Xu [1 ,2 ]
Song, Chun-Yan [1 ,2 ]
Jin, Ning [1 ,2 ]
Gong, Wen-Jian [1 ,2 ]
Liu, Xing-Yu [1 ,2 ]
Huang, Lei [6 ]
Tian, Xun [6 ]
Li, Lin [7 ]
Xing, Hui [7 ]
Ma, Ding [1 ,2 ]
Li, Chun-Rui [8 ]
Ye, Fei [9 ]
Gao, Qing-Lei [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Natl Med Ctr Major Publ Hlth Events, Wuhan 430000, Peoples R China
[2] Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Gynecol & Obstet, Wuhan 430000, Peoples R China
[3] Wuhan Univ, GNSS Res Ctr, Wuhan 430079, Peoples R China
[4] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518000, Peoples R China
[5] Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Gastroenterol, Wuhan 430000, Peoples R China
[6] Huazhong Univ Sci & Technol, Cent Hosp Wuhan, Tongji Med Coll, Dept Obstet & Gynecol, Wuhan, Peoples R China
[7] Hubei Univ Arts & Sci, Xiangyang Cent Hosp, Dept Obstet & Gynecol, Affiliated Hosp, Xiangyang, Hubei, Peoples R China
[8] Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Hematol, Wuhan 430000, Peoples R China
[9] Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Neurosurg, Wuhan 430000, Peoples R China
基金
中国国家自然科学基金;
关键词
CLINICAL CHARACTERISTICS; MULTICENTER; CANCER; CHINA;
D O I
10.1038/s41467-020-18684-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Soaring cases of coronavirus disease (COVID-19) are pummeling the global health system. Overwhelmed health facilities have endeavored to mitigate the pandemic, but mortality of COVID-19 continues to increase. Here, we present a mortality risk prediction model for COVID-19 (MRPMC) that uses patients' clinical data on admission to stratify patients by mortality risk, which enables prediction of physiological deterioration and death up to 20 days in advance. This ensemble model is built using four machine learning methods including Logistic Regression, Support Vector Machine, Gradient Boosted Decision Tree, and Neural Network. We validate MRPMC in an internal validation cohort and two external validation cohorts, where it achieves an AUC of 0.9621 (95% CI: 0.9464-0.9778), 0.9760 (0.9613-0.9906), and 0.9246 (0.8763-0.9729), respectively. This model enables expeditious and accurate mortality risk stratification of patients with COVID-19, and potentially facilitates more responsive health systems that are conducive to high risk COVID-19 patients. Methods to stratify patients according to mortality risk are essential to allocate limited heath resources during the COVID-19 crisis. Here, using machine learning methods, the authors present a mortality risk prediction model for COVID-19 that uses patients' clinical data on admission to stratify patients by mortality risk.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Machine learning based early warning system enables accurate mortality risk prediction for COVID-19
    Yue Gao
    Guang-Yao Cai
    Wei Fang
    Hua-Yi Li
    Si-Yuan Wang
    Lingxi Chen
    Yang Yu
    Dan Liu
    Sen Xu
    Peng-Fei Cui
    Shao-Qing Zeng
    Xin-Xia Feng
    Rui-Di Yu
    Ya Wang
    Yuan Yuan
    Xiao-Fei Jiao
    Jian-Hua Chi
    Jia-Hao Liu
    Ru-Yuan Li
    Xu Zheng
    Chun-Yan Song
    Ning Jin
    Wen-Jian Gong
    Xing-Yu Liu
    Lei Huang
    Xun Tian
    Lin Li
    Hui Xing
    Ding Ma
    Chun-Rui Li
    Fei Ye
    Qing-Lei Gao
    [J]. Nature Communications, 11
  • [2] An interpretable machine learning model based on a quick pre-screening system enables accurate deterioration risk prediction for COVID-19
    Jia, Lijing
    Wei, Zijian
    Zhang, Heng
    Wang, Jiaming
    Jia, Ruiqi
    Zhou, Manhong
    Li, Xueyan
    Zhang, Hankun
    Chen, Xuedong
    Yu, Zheyuan
    Wang, Zhaohong
    Li, Xiucheng
    Li, Tingting
    Liu, Xiangge
    Liu, Pei
    Chen, Wei
    Li, Jing
    He, Kunlun
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [3] An interpretable machine learning model based on a quick pre-screening system enables accurate deterioration risk prediction for COVID-19
    Lijing Jia
    Zijian Wei
    Heng Zhang
    Jiaming Wang
    Ruiqi Jia
    Manhong Zhou
    Xueyan Li
    Hankun Zhang
    Xuedong Chen
    Zheyuan Yu
    Zhaohong Wang
    Xiucheng Li
    Tingting Li
    Xiangge Liu
    Pei Liu
    Wei Chen
    Jing Li
    Kunlun He
    [J]. Scientific Reports, 11
  • [4] Machine Learning Based Clinical Decision Support System for Early COVID-19 Mortality Prediction
    Karthikeyan, Akshaya
    Garg, Akshit
    Vinod, P. K.
    Priyakumar, U. Deva
    [J]. FRONTIERS IN PUBLIC HEALTH, 2021, 9
  • [5] An Early Warning Tool for Predicting Mortality Risk of COVID-19 Patients Using Machine Learning
    Chowdhury, Muhammad E. H.
    Rahman, Tawsifur
    Khandakar, Amith
    Al-Madeed, Somaya
    Zughaier, Susu M.
    Doi, Suhail A. R.
    Hassen, Hanadi
    Islam, Mohammad T.
    [J]. COGNITIVE COMPUTATION, 2024, 16 (04) : 1778 - 1793
  • [6] Covid-19 Mortality Risk Prediction Model Using Machine Learning
    Sanchez-Galvez, Alba Maribel
    Sanchez-Galvez, Sully
    Alvarez-Gonzalez, Ricardo
    Rojas-Alarcon, Frida
    [J]. COMPUTACION Y SISTEMAS, 2023, 27 (04): : 881 - 888
  • [7] Early Mortality Risk Prediction in Covid-19 Patients Using an Ensemble of Machine Learning Models
    Walia, Harsh
    Jeevaraj, S.
    [J]. 2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2021), 2021, : 965 - 970
  • [8] Early prediction of mortality risk among patients with severe COVID-19, using machine learning
    Hu, Chuanyu
    Liu, Zhenqiu
    Jiang, Yanfeng
    Shi, Oumin
    Zhang, Xin
    Xu, Kelin
    Suo, Chen
    Wang, Qin
    Song, Yujing
    Yu, Kangkang
    Mao, Xianhua
    Wu, Xuefu
    Wu, Mingshan
    Shi, Tingting
    Jiang, Wei
    Mu, Lina
    Tully, Damien C.
    Xu, Lei
    Jin, Li
    Li, Shusheng
    Tao, Xuejin
    Zhang, Tiejun
    Chen, Xingdong
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2020, 49 (06) : 1918 - 1929
  • [9] A machine learning based exploration of COVID-19 mortality risk
    Mahdavi, Mahdi
    Choubdar, Hadi
    Zabeh, Erfan
    Rieder, Michael
    Safavi-Naeini, Safieddin
    Jobbagy, Zsolt
    Ghorbani, Amirata
    Abedini, Atefeh
    Kiani, Arda
    Khanlarzadeh, Vida
    Lashgari, Reza
    Kamrani, Ehsan
    [J]. PLOS ONE, 2021, 16 (07):
  • [10] Prediction of COVID-19 deterioration in high-risk patients at diagnosis: an early warning score for advanced COVID-19 developed by machine learning
    Carolin E. M. Jakob
    Ujjwal Mukund Mahajan
    Marcus Oswald
    Melanie Stecher
    Maximilian Schons
    Julia Mayerle
    Siegbert Rieg
    Mathias Pletz
    Uta Merle
    Kai Wille
    Stefan Borgmann
    Christoph D. Spinner
    Sebastian Dolff
    Clemens Scherer
    Lisa Pilgram
    Maria Rüthrich
    Frank Hanses
    Martin Hower
    Richard Strauß
    Steffen Massberg
    Ahmet Görkem Er
    Norma Jung
    Jörg Janne Vehreschild
    Hans Stubbe
    Lukas Tometten
    Rainer König
    [J]. Infection, 2022, 50 : 359 - 370