Reliability inferences of modulated power-law process #i

被引:2
|
作者
Muralidharan, K [1 ]
机构
[1] Bhavnagar Univ, Dept Stat, Bhavnagar 364002, Gujarat, India
关键词
maximum likelihood estimate; power-law process; uniformly minimum variance unbiased estimate;
D O I
10.1109/24.994901
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The PLP (power-law process) is often used to model failure data from repairable system, when both renewal type behavior and time trend are present. This paper considers the reliability inferences of modulated-PLP models. The maximum likelihood estimate and the uniformly minimum variance unbiased estimate of Modulated PLP #i are derived and computed numerically. Two examples are given.
引用
收藏
页码:23 / 26
页数:4
相关论文
共 50 条
  • [1] Electrokinetically modulated peristaltic transport of power-law fluids
    Goswami, Prakash
    Chakraborty, Jeevanjyoti
    Bandopadhyay, Aditya
    Chakraborty, Suman
    [J]. MICROVASCULAR RESEARCH, 2016, 103 : 41 - 54
  • [2] The Fractional Birth Process with Power-Law Immigration
    Alessandra Meoli
    Niko Beerenwinkel
    Mykola Lebid
    [J]. Journal of Statistical Physics, 2020, 178 : 775 - 799
  • [3] The Fractional Birth Process with Power-Law Immigration
    Meoli, Alessandra
    Beerenwinkel, Niko
    Lebid, Mykola
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2020, 178 (03) : 775 - 799
  • [4] On power-law fluids with the power-law index proportional to the pressure
    Malek, J.
    Rajagopal, K. R.
    Zabensky, J.
    [J]. APPLIED MATHEMATICS LETTERS, 2016, 62 : 118 - 123
  • [5] Model of a fragmentation process and its power-law behavior
    [J]. 1600, American Physical Society, Melville, United States (64):
  • [6] On testing of parameters in modulated power law process
    Muralidharan, K
    [J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2001, 17 (04) : 331 - 343
  • [7] Power-law Distribution of Solar Cycle-modulated Coronal Jets
    Liu, Jiajia
    Song, Anchuan
    Jess, David B.
    Zhang, Jie
    Mathioudakis, Mihalis
    Soos, Szabolcs
    Keenan, Francis P.
    Wang, Yuming
    Erdelyi, Robertus
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2023, 266 (01):
  • [8] Statistical Inference for Power-Law Process With Competing Risks
    Somboonsavatdee, Anupap
    Sen, Ananda
    [J]. TECHNOMETRICS, 2015, 57 (01) : 112 - 122
  • [9] Confidence intervals for the scale parameter of the power-law process
    Gaudoin, Olivier
    Yang, Bo
    Xie, Min
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (08) : 1525 - 1538
  • [10] GOODNESS-OF-FIT TESTS FOR THE POWER-LAW PROCESS
    PARK, WJ
    KIM, YG
    [J]. IEEE TRANSACTIONS ON RELIABILITY, 1992, 41 (01) : 107 - 111