Plasma-Enhanced Atomic Layer Deposition of Ultrathin Oxide Coatings for Stabilized Lithium-Sulfur Batteries

被引:130
|
作者
Kim, Hyea [1 ,2 ]
Lee, Jung Tae [1 ]
Lee, Dong-Chan [1 ]
Magasinski, Alexandre [1 ]
Cho, Won-il [3 ]
Yushin, Gleb [1 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Sila Nanotechnol Inc, Atlanta, GA 30332 USA
[3] Korea Inst Sci & Technol, Natl Agenda Res Div, Energy Storage Res Ctr, Seoul 130650, South Korea
关键词
lithium sulfur batteries; activated carbon; fibers; nanocomposites; polysulfide; confinement; dissolution; CARBON NANOTUBES; VANADIUM-OXIDE; COMPOSITE ELECTRODES; CATHODE MATERIAL; PERFORMANCE; MECHANISMS; PARTICLES; CHEMISTRY; BEHAVIOR; CELLS;
D O I
10.1002/aenm.201300253
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
One of the most challenging problems in the development of lithium-sulfur batteries is polysulfide dissolution, which leads to cell overcharge and low columbic efficiency. Here, we propose the formation of a thin conformal Li-ion permeable oxide layer on the sulfur-carbon composite electrode surface by rapid plasma enhanced atomic layer deposition (PEALD) in order to prevent this dissolution, while preserving electrical connectivity within the individual electrode particles. PEALD synthesis offers a fast deposition rate combined with a low operating temperature, which allows sulfur evaporation during deposition to be avoided. After PEALD of a thin layer of aluminium oxide on the surface of electrode composed of large (ca. 10 mu m in diameter) S-infiltrated activated carbon fibers (S-ACF), significantly enhanced cycle life is observed, with a capacity in excess of 600 mAhg(-1) after 300 charge-discharge cycles. Scanning electron microscopy (SEM) shows a significant amount of redeposited lithium sulfides on the external surface of regular S-ACF electrodes. However, the PEALD alumina-coated electrodes show no lithium sulfide deposits on the fiber surface. Energy dispersive spectroscopy (EDS) studies of the electrodes' chemical composition further confirms that PEALD alumina coatings dramatically reduce S dissolution from the cathodes by confining the polysulfides inside the alumina barrier.
引用
收藏
页码:1308 / 1315
页数:8
相关论文
共 50 条
  • [1] Controlled Atomic Layer Deposition of Aluminum Oxide to Improve the Performance of Lithium-Sulfur Batteries
    Garcia, Sarai
    Leonet, Olatz
    Azaceta, Eneko
    Gomez, Inaki
    Reifs, Antonio
    Alberto Blazquez, J.
    Knez, Mato
    [J]. ENERGY TECHNOLOGY, 2020, 8 (05)
  • [2] Plasma-enhanced atomic layer deposition of nickel and cobalt phosphate for lithium ion batteries
    Henderick, Lowie
    Blomme, Ruben
    Minjauw, Matthias
    Keukelier, Jonas
    Meersschaut, Johan
    Dendooven, Jolien
    Vereecken, Philippe
    Detavernier, Christophe
    [J]. DALTON TRANSACTIONS, 2022, 51 (05) : 2059 - 2067
  • [3] Plasma-enhanced atomic layer deposition of titanium phosphate as an electrode for lithium-ion batteries
    Dobbelaere, Thomas
    Mattelaer, Felix
    Roy, Amit Kumar
    Vereecken, Philippe
    Detavernier, Christophe
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (01) : 330 - 338
  • [4] Emerging applications of atomic layer deposition for lithium-sulfur and sodium-sulfur batteries
    Zhang, Jun
    Zhang, Gaixia
    Chen, Zhangsen
    Dai, Hongliu
    Hu, Qingmin
    Liao, Shijun
    Sun, Shuhui
    [J]. ENERGY STORAGE MATERIALS, 2020, 26 : 513 - 533
  • [5] Atomic Layer Deposition of Single Atomic Cobalt as a Catalytic Interlayer for Lithium-Sulfur Batteries
    Lin, Qingyang
    Ding, Bing
    Chen, Shuang
    Li, Peng
    Li, Zhiwei
    Shi, Yuanyuan
    Dou, Hui
    Zhang, Xiaogang
    [J]. ACS APPLIED ENERGY MATERIALS, 2020, 3 (11) : 11206 - 11212
  • [6] Electrical Properties of Ultrathin Platinum Films by Plasma-Enhanced Atomic Layer Deposition
    Kim, Hyo Jin K.
    Kaplan, Kirsten E.
    Schindler, Peter
    Xu, Shicheng
    Winterkorn, Martin M.
    Heinz, David B.
    English, Timothy S.
    Provine, J.
    Prinz, Fritz B.
    Kenny, Thomas W.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (09) : 9594 - 9599
  • [7] Plasma-Enhanced Atomic Layer Deposition of Ni
    Lee, Han-Bo-Ram
    Bang, Sung-Hwan
    Kim, Woo-Hee
    Gu, Gil Ho
    Lee, Young Kuk
    Chung, Taek-Mo
    Kim, Chang Gyoun
    Park, Chan Gyung
    Kim, Hyungjun
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2010, 49 (05) : 05FA111 - 05FA114
  • [8] Atomic and Molecular Layer Deposition for Superior Lithium-Sulfur Batteries: Strategies, Performance, and Mechanisms
    Sun, Qian
    Lau, Kah Chun
    Geng, Dongsheng
    Meng, Xiangbo
    [J]. BATTERIES & SUPERCAPS, 2018, 1 (02) : 41 - 68
  • [9] Topographical selective deposition: A comparison between plasma-enhanced atomic layer deposition/sputtering and plasma-enhanced atomic layer deposition/quasi-atomic layer etching approaches
    Jaffal, Moustapha
    Yeghoyan, Taguhi
    Lefevre, Gauthier
    Gassilloud, Remy
    Posseme, Nicolas
    Vallee, Christophe
    Bonvalot, Marceline
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2021, 39 (03):
  • [10] Atomistic Simulations of Plasma-Enhanced Atomic Layer Deposition
    Becker, Martin
    Sierka, Marek
    [J]. MATERIALS, 2019, 12 (16)