Learning Kalman filter basics through simulation

被引:0
|
作者
Tharp, HS [1 ]
机构
[1] Univ Arizona, Dept Elect & Comp Engn, Tucson, AZ 85721 USA
关键词
Kalman filtering; parameter estimation; system estimation;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper demonstrates how characteristics of Kalman filtering can be illustrated using simulation exercises. The simulation exercises consist of estimating piecewise constant parameters and estimating the state vector of a dynamic system in both the open-loop and the closed-loop setting. Through the use of these simulation exercises, strong mental images of Kalman filtering concepts are quickly captured. Some of the concepts that are demonstrated are covariance resetting, utilizing a constant Kalman gain matrix, the importance of accurately modelling the system dynamics, and the effectiveness of Kalman filtering in reducing the unwanted system perturbations caused by measurement noise and system noise.
引用
收藏
页码:45 / 50
页数:6
相关论文
共 50 条
  • [1] Bayesian Filtering Techniques: Kalman and Extended Kalman Filter Basics
    Mochnac, Jan
    Marchevsky, Stanislav
    Kocan, Pavol
    [J]. PROCEEDINGS OF 19TH INTERNATIONAL CONFERENCE RADIOELEKTRONIKA 2009, 2009, : 119 - 122
  • [2] Accelerating Q-learning through Kalman Filter Estimations applied in a RoboCup SSL Simulation
    Ahumada, Gabriel A.
    Nettle, Cristobal J.
    Solis, Miguel A.
    [J]. 2013 IEEE LATIN AMERICAN ROBOTICS SYMPOSIUM (LARS 2013), 2013, : 112 - 117
  • [3] UNSUPERVISED LEARNING OF KALMAN FILTER
    HAMPTON, RLT
    [J]. ELECTRONICS LETTERS, 1973, 9 (17) : 383 - 384
  • [4] EXPECTATIONS, LEARNING AND THE KALMAN FILTER
    CUTHBERTSON, K
    [J]. MANCHESTER SCHOOL OF ECONOMIC AND SOCIAL STUDIES, 1988, 56 (03): : 223 - 246
  • [5] INTRODUCTION TO THE KALMAN FILTER THROUGH EXPERIMENTAL PHYSICS
    Rodriguez-De-Torner, L. A.
    Sanchez-Colina, G.
    [J]. REVISTA CUBANA DE FISICA, 2023, 40 (01): : 34 - 38
  • [6] Iterative learning Kalman filter for repetitive processes
    Cao, Zhixing
    Lu, Jingyi
    Zhang, Ridong
    Gao, Furong
    [J]. JOURNAL OF PROCESS CONTROL, 2016, 46 : 92 - 104
  • [7] Learning of Kalman filter parameters for lane detection
    Suttorp, Thorsten
    Buecher, Thomas
    [J]. 2006 IEEE INTELLIGENT VEHICLES SYMPOSIUM, 2006, : 555 - +
  • [8] Learning an outlier-robust Kalman filter
    Ting, Jo-Anne
    Theodorou, Evangelos
    Schaal, Stefan
    [J]. MACHINE LEARNING: ECML 2007, PROCEEDINGS, 2007, 4701 : 748 - +
  • [9] Adaptive Learning Kalman Filter with Gaussian Process
    Lee, Taeyoung
    [J]. 2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 4442 - 4447
  • [10] Online Learning of the Kalman Filter With Logarithmic Regret
    Tsiamis, Anastasios
    Pappas, George J.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (05) : 2774 - 2789