Interactive tool for image annotation using a semi-supervised and hierarchical approach

被引:7
|
作者
Chiang, Cheng-Chieh [1 ]
机构
[1] Takming Univ Sci & Technol, Dept Informat Technol, Taipei 114, Taiwan
关键词
Image annotation; Relevance feedback; Semantic gap; Semi-supervised clustering; COLOR;
D O I
10.1016/j.csi.2012.05.002
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a semi-automatic tool, called IGAnn (Interactive image ANNotation), that assists users in annotating textual labels with images. IGAnn performs an interactive retrieval-like procedure: the system presents the user with images that have higher confidences, and then the user determines which images are actually relevant or irrelevant for a specified label. By collecting relevant and irrelevant images of iterations, a hierarchical classifier associated with the specified label is built using our proposed semi-supervised approach to compute confidence values of unlabeled images. This paper describes the system interface of IGAnn and also demonstrates quantitative experiments of our proposed approach. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:50 / 58
页数:9
相关论文
共 50 条
  • [1] Image annotation with relevance feedback using a semi-supervised and hierarchical approach
    Chiang, Cheng-Chieh
    Hung, Ming-Wei
    Hung, Yi-Ping
    Leow, Wee Kheng
    [J]. VISAPP 2008: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 2, 2008, : 173 - +
  • [2] Semi-supervised Hierarchical Clustering for Semantic SAR Image Annotation
    Yao, Wei
    Dumitru, Corneliu Octavian
    Loffeld, Otmar
    Datcu, Mihai
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (05) : 1993 - 2008
  • [3] Image Annotation with Semi-Supervised Clustering
    Sayar, Ahmet
    Yannan-Vural, Fatos T.
    [J]. 2008 IEEE 16TH SIGNAL PROCESSING, COMMUNICATION AND APPLICATIONS CONFERENCE, VOLS 1 AND 2, 2008, : 517 - 520
  • [4] Image Annotation With Semi-Supervised Clustering
    Sayar, Ahmet
    Vural, Fatos T. Yarman
    [J]. 2009 24TH INTERNATIONAL SYMPOSIUM ON COMPUTER AND INFORMATION SCIENCES, 2009, : 12 - +
  • [5] Automatic image annotation using semi-supervised generative modeling
    Amiri, S. Hamid
    Jamzad, Mansour
    [J]. PATTERN RECOGNITION, 2015, 48 (01) : 174 - 188
  • [6] Automatic image annotation using a semi-supervised ensemble of classifiers
    Marin-Castro, Heidy
    Sucar, Enrique
    Morales, Eduardo
    [J]. PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, PROCEEDINGS, 2007, 4756 : 487 - 495
  • [7] Semi-supervised annotation of faces in image collection
    Kumar, Vijay
    Namboodiri, Anoop
    Jawahar, C. V.
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2018, 12 (01) : 141 - 149
  • [8] Semi-supervised annotation of faces in image collection
    Vijay Kumar
    Anoop Namboodiri
    C. V. Jawahar
    [J]. Signal, Image and Video Processing, 2018, 12 : 141 - 149
  • [9] Semi-supervised learning through hierarchical clustering for interactive aerospace image analysis
    Rylov, Sergey
    [J]. REGIONAL PROBLEMS OF EARTH REMOTE SENSING (RPERS 2018), 2019, 75
  • [10] A NOVEL SEMI-SUPERVISED DETECTION APPROACH WITH WEAK ANNOTATION
    Tokuda, Eric K.
    Ferreira, Gabriel B. A.
    Silva, Claudio
    Cesar-, Roberto M., Jr.
    [J]. 2018 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION (SSIAI), 2018, : 129 - 132