Change Detection in Moving-Camera Videos Using a Shift-Invariant Dissimilarity Metric

被引:1
|
作者
Dias, Thadeu L. B. [1 ]
Silva, Eduardo A. B. [1 ]
Netto, Sergio L. [1 ]
Thomaz, Lucas A. [2 ]
机构
[1] Univ Fed Rio de Janeiro, Elect Engn Program, COPPE UFRJ, Rio De Janeiro, Brazil
[2] Polytechn Leiria, Inst Telecomun, Portugal ESTG, Leiria, Portugal
关键词
Anomaly detection; Video surveillance; Unsupervised learning; Deep learning; Manifold learning; ANOMALY DETECTION;
D O I
10.1109/EUVIP53989.2022.9922843
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work addresses the problem of identifying anomalous objects in a cluttered environment using footage captured with moving cameras. The proposed method consists in the application of an edge-like feature extractor on the input images and in the learning of the space of non-anomalous features through deep autoencoder networks. Interestingly, this process is equivalent to employing a shift-invariant dissimilarity metric as an optimization target to the autoencoders. By the nature of the change detection task, it is necessary to collect and annotate large, diverse sets of anomalous conditions in order to train deep models in a supervised manner. The models trained in this proposal rely solely on anomalous-free data for parameter training, facilitating its application in a real-world scenario. The developed method was trained on the VDAO dataset, a challenging dataset with recordings of varied illumination situations. Unlike previous works using the same set, the autoencoder does not require the computationally expensive step of matching and registering a known reference frame to the tested frame that potentially contains an anomaly. Requiring not much more than a single network inference step, this proposal allows for real-time execution, even in systems with modest computational power. When tested against the VDAO200 dataset, consisting of 56 short excerpts of recordings of the VDAO scenes, this proposal matches the evaluation figures of the state-of-the-art algorithms, with measured DIS (distance to upper-left ROC corner) of 0.29 and an average precision score of 0.91.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Change detection in moving-camera videos with limited samples using twin-CNN features and learnable morphological operations
    Padilla, Rafael
    da Silva, Allan F.
    da Silva, Eduardo A. B.
    Netto, Sergio L.
    [J]. SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 115
  • [2] A voting scheme for estimating the synchrony of moving-camera videos
    Pooley, DW
    Brooks, MJ
    van den Hengel, A
    Chojnacki, W
    [J]. 2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 1, PROCEEDINGS, 2003, : 413 - 416
  • [3] Domain-Transformable Sparse Representation for Anomaly Detection in Moving-Camera Videos
    Jardim, Eric
    Thomaz, Lucas A.
    da Silva, Eduardo A. B.
    Netto, Sergio L.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 1329 - 1343
  • [4] IMAGE DENOISING USING SHIFT-INVARIANT TECHNIQUES FOR CAMERA IMAGES
    Roy, Shikha
    Agarwal, Sugandha
    Kumar, Anil
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND AUTOMATION (ICCCA), 2017, : 1142 - 1147
  • [5] Anomaly Detection in Moving-Camera Video Sequences Using Principal Subspace Analysis
    Thomaz, Lucas A.
    Jardim, Eric
    da Silva, Allan F.
    da Silva, Eduardo A. B.
    Netto, Sergio L.
    Krim, Hamid
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2018, 65 (03) : 1003 - 1015
  • [6] Impulse detection using a shift-invariant dictionary and multiple compressions
    Lin, Huibin
    Tang, Jianmeng
    Mechefske, Chris
    [J]. JOURNAL OF SOUND AND VIBRATION, 2019, 449 : 1 - 17
  • [7] Shift-invariant signal norms for fault detection and control
    Johansson, Andreas
    [J]. SYSTEMS & CONTROL LETTERS, 2008, 57 (02) : 105 - 111
  • [8] MOVING-CAMERA VIDEO SURVEILLANCE IN CLUTTERED ENVIRONMENTS USING DEEP FEATURES
    Afonso, Bruno M.
    Cinelli, Lucas P.
    Thomaz, Lucas A.
    da Silva, Allan F.
    da Silva, Eduardo A. B.
    Netto, Sergio L.
    [J]. 2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 2296 - 2300
  • [9] Motion detection in moving camera videos using background modeling and FlowNet
    Delibasoglu, Ibrahim
    Kosesoy, Irfan
    Kotan, Muhammed
    Selamet, Feyza
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2022, 88
  • [10] SHIFT-INVARIANT AND ROTATION-INVARIANT OBJECT RECONSTRUCTION USING THE BISPECTRUM
    SADLER, BM
    GIANNAKIS, GB
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1992, 9 (01): : 57 - 69