Skyline Computation with Noisy Comparisons

被引:3
|
作者
Groz, Benoit [1 ]
Mallmann-Trenn, Frederik [2 ]
Mathieu, Claire [3 ,4 ]
Verdugo, Victor [5 ,6 ]
机构
[1] Univ Paris Saclay, LRI, CNRS, Gif Sur Yvette, France
[2] Kings Coll London, London, England
[3] CNRS, Paris, France
[4] IRIF, Paris, France
[5] London Sch Econ & Polit Sci, London, England
[6] Univ OHiggins, Ohiggins, Chile
来源
关键词
Skyline; Noisy comparisons; Fault-tolerance; ALGORITHMS;
D O I
10.1007/978-3-030-48966-3_22
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Given a set of n points in a d-dimensional space, we seek to compute the skyline, i.e., those points that are not strictly dominated by any other point, using few comparisons between elements. We adopt the noisy comparison model [15] where comparisons fail with constant probability and confidence can be increased through independent repetitions of a comparison. In this model motivated by Crowdsourcing applications, Groz and Milo [18] show three bounds on the query complexity for the skyline problem. We improve significantly on that state of the art and provide two output-sensitive algorithms computing the skyline with respective query complexity O(ndlog(dk/delta)) and O(ndklog(k/delta)), where k is the size of the skyline and delta the expected probability that our algorithm fails to return the correct answer. These results are tight for low dimensions.
引用
收藏
页码:289 / 303
页数:15
相关论文
共 50 条
  • [1] Skyline Queries with Noisy Comparisons
    Groz, Benoit
    Milo, Tova
    PODS'15: PROCEEDINGS OF THE 33RD ACM SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS, 2015, : 185 - 198
  • [2] Group skyline computation
    Im, Hyeonseung
    Park, Sungwoo
    INFORMATION SCIENCES, 2012, 188 : 151 - 169
  • [3] Skyline in Crowdsourcing with Imprecise Comparisons
    Anagnostopoulos, Aris
    Fazzone, Adriano
    Vettraino, Giacomo
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 37 - 46
  • [4] Skyline View: Efficient Distributed Subspace Skyline Computation
    Kim, Jinhan
    Lee, Jongwuk
    Hwang, Seung-won
    DATA WAREHOUSING AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2009, 5691 : 312 - 324
  • [5] Parallel Computation of Skyline Queries
    Woods, Louis
    Alonso, Gustavo
    Teubner, Jens
    2013 IEEE 21ST ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM), 2013, : 1 - 8
  • [6] Efficient continuous skyline computation
    Morse, M.
    Patel, J. M.
    Grosky, W. I.
    INFORMATION SCIENCES, 2007, 177 (17) : 3411 - 3437
  • [7] Indexing for progressive skyline computation
    Eng, PK
    Ooi, BC
    Tan, KL
    DATA & KNOWLEDGE ENGINEERING, 2003, 46 (02) : 169 - 201
  • [8] Computation of spatial skyline points
    Bhattacharya, Binay
    Bishnu, Arijit
    Cheong, Otfried
    Das, Sandip
    Karmakar, Arindam
    Snoeyink, Jack
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2021, 93
  • [9] Skyline Computation for Big Data
    Kulkarni, R. D.
    Momin, B. F.
    DATA SCIENCE AND BIG DATA ANALYTICS, 2019, 16 : 267 - 276
  • [10] Supporting efficient distributed skyline computation using skyline views
    Lee, Jongwuk
    Kim, Jinhan
    Hwang, Seung-won
    INFORMATION SCIENCES, 2012, 194 : 24 - 37