A Reliable Brain-Computer Interface Based on SSVEP Using Online Recursive Independent Component Analysis

被引:0
|
作者
Chen, Chiu-Kuo [1 ,2 ,3 ]
Fang, Wai-Chi [1 ,2 ]
机构
[1] Natl Chiao Tung Univ, Dept Elect Engn, Hsinchu, Taiwan
[2] Natl Chiao Tung Univ, Inst Elect, Hsinchu, Taiwan
[3] Minist Econ Affairs, Bur Stand Metrol & Inspect, Taipei, Taiwan
关键词
D O I
暂无
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
This paper presents a reliable brain-computer interface (BCI) based on a steady-state visually evoked potential (SSEVP) method using online recursive independent component analysis (ORICA) with denoising. The proposed system includes a visual stimulator, a front-end data acquisition module, an ORICA module, a power spectrum density (PSD)-based noise channel detection module, a denoising module, and an EEG reconstruction module, and a detection module using canonical correlation analysis (CCA). The system with the proposed PSD-based denoising mechanism is simulated using test patterns of 9-Hz and 10-Hz SSEVP-based EEG raw data stream with an 8-second sliding window length with a 1-second step size under the condition of 128 Hz sampling rate. The accuracy of the detection is approximately 88% and 95% hit rate for 9-Hz and 10-Hz test patterns, respectively.
引用
收藏
页码:2798 / 2801
页数:4
相关论文
共 50 条
  • [1] Online brain-computer interface system based on independent component analysis
    Hu, Pan
    Zhang, Lei
    Zhou, Bangyan
    Wu, Xiaopei
    [J]. Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2017, 34 (01): : 106 - 114
  • [2] A High Rate Online SSVEP Based Brain-Computer Interface Speller
    Cao, Teng
    Wang, Xin
    Wang, Boyu
    Wong, Chi Man
    Wan, Feng
    Mak, Peng Un
    Mak, Pui In
    Vai, Mang I.
    [J]. 2011 5TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2011, : 465 - 468
  • [3] Correlated Component Analysis for Enhancing the Performance of SSVEP-Based Brain-Computer Interface
    Zhang, Yangsong
    Guo, Daqing
    Li, Fali
    Yin, Erwei
    Zhang, Yu
    Li, Peiyang
    Zhao, Qibin
    Tanaka, Toshihisa
    Yao, Dezhong
    Xu, Peng
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2018, 26 (05) : 948 - 956
  • [4] Periodic component analysis as a spatial filter for SSVEP-based brain-computer interface
    Kumar, G. R. Kiran
    Reddy, M. Ramasubba
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2018, 307 : 164 - 174
  • [5] An independent SSVEP-based brain-computer interface in locked-in syndrome
    Lesenfants, D.
    Habbal, D.
    Lugo, Z.
    Lebeau, M.
    Horki, P.
    Amico, E.
    Pokorny, C.
    Gomez, F.
    Soddu, A.
    Mueller-Putz, G.
    Laureys, S.
    Noirhomme, Q.
    [J]. JOURNAL OF NEURAL ENGINEERING, 2014, 11 (03)
  • [6] SSVEP recognition using common feature analysis in brain-computer interface
    Zhang, Yu
    Zhou, Guoxu
    Jin, Jing
    Wang, Xingyu
    Cichocki, Andrzej
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2015, 244 : 8 - 15
  • [7] A Fast SSVEP-Based Brain-Computer Interface
    Jorajuria, Tania
    Gomez, Marisol
    Vidaurre, Carmen
    [J]. HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, HAIS 2020, 2020, 12344 : 49 - 60
  • [8] SSVEP Based Brain-Computer Interface for Robot Control
    Ortner, Rupert
    Guger, Christoph
    Prueckl, Robert
    Gruenbacher, Engelbert
    Edlinger, Guenter
    [J]. COMPUTERS HELPING PEOPLE WITH SPECIAL NEEDS, PROCEEDINGS, PT 2, 2010, 6180 : 85 - 90
  • [9] An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method
    Bin, Guangyu
    Gao, Xiaorong
    Yan, Zheng
    Hong, Bo
    Gao, Shangkai
    [J]. JOURNAL OF NEURAL ENGINEERING, 2009, 6 (04)
  • [10] Regularised task-related component analysis for robust SSVEP-based brain-computer interface
    Lee, H. K.
    Choi, Y-S
    [J]. ELECTRONICS LETTERS, 2022, 58 (16) : 603 - 605