ECO: Entity-level Captioning in Context

被引:0
|
作者
Cho, Hyunsouk [1 ]
Hwang, Seung-won [2 ]
机构
[1] POSTECH, 77 Cheongam Ro, Pohang 36763, Gyeongbuk, South Korea
[2] Yonsei Univ, 50 Yonsei Ro, Seoul 03722, South Korea
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Visual scene understanding has been one of the major goals of computer vision. However, existing work has focused on the object-level understanding, which limits the visual questions that can be answered. The goal of this paper is to invite collective efforts for entity-level understanding of images, by releasing ECO datasets and baselines for this task.
引用
收藏
页码:750 / 751
页数:2
相关论文
共 50 条
  • [1] Entity-level simulation of urban operations
    Nash, DA
    Pratt, DR
    Kendall, TM
    [J]. Proceedings of the HPCMP, Users Group Conference 2005, 2005, : 428 - 432
  • [2] Entity-Level Sentiment Analysis of Issue Comments
    Ding, Jin
    Sun, Hailong
    Wang, Xu
    Liu, Xudong
    [J]. 2018 IEEE/ACM 3RD INTERNATIONAL WORKSHOP ON EMOTION AWARENESS IN SOFTWARE ENGINEERING (SEMOTION), 2018, : 7 - 13
  • [3] Entity-level Factual Consistency of Abstractive Text Summarization
    Nan, Feng
    Nallapati, Ramesh
    Wang, Zhiguo
    dos Santos, Cicero Nogueira
    Zhu, Henghui
    Zhang, Dejiao
    McKeown, Kathleen
    Xiang, Bing
    [J]. 16TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EACL 2021), 2021, : 2727 - 2733
  • [4] Entity-level sentiment prediction in Danmaku video interaction
    Bai, Qingchun
    Wei, Kai
    Zhou, Jie
    Xiong, Chao
    Wu, Yuanbin
    Lin, Xin
    He, Liang
    [J]. JOURNAL OF SUPERCOMPUTING, 2021, 77 (09): : 9474 - 9493
  • [5] Entity-level stream classification: exploiting entity similarity to label the future observations referring to an entity
    Unnikrishnan, Vishnu
    Beyer, Christian
    Matuszyk, Pawel
    Niemann, Uli
    Pryss, Ruediger
    Schlee, Winfried
    Ntoutsi, Eirini
    Spiliopoulou, Myra
    [J]. INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2020, 9 (01) : 1 - 15
  • [6] Entity-Level Stream Classification: Exploiting Entity Similarity to Label the Future Observations Referring to an Entity
    Unnikrishnan, Vishnu
    Beyer, Christian
    Matuszyk, Pawel
    Niemann, Uli
    Pryss, Ruediger
    Schlee, Winfried
    Ntoutsi, Eirini
    Spiliopoulou, Myra
    [J]. 2018 IEEE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2018, : 246 - 255
  • [7] Improving Relation Extraction by Entity-Level Contrastive Learning
    Lu, Ting
    Wang, Shengbiao
    Huang, Qiubo
    Guo, Wenjing
    Chang, Shan
    Liu, Guohua
    [J]. 2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [8] On the feasibility of running entity-level simulations on grid platforms
    Su, A
    Berman, F
    Casanova, H
    [J]. FIFTH IEEE/ACM INTERNATIONAL WORKSHOP ON GRID COMPUTING, PROCEEDINGS, 2004, : 312 - 319
  • [9] Entity-level sentiment prediction in Danmaku video interaction
    Qingchun Bai
    Kai Wei
    Jie Zhou
    Chao Xiong
    Yuanbin Wu
    Xin Lin
    Liang He
    [J]. The Journal of Supercomputing, 2021, 77 : 9474 - 9493
  • [10] Some Entity-level Discounts used in Mergers and Acquisitions
    Brabenec, Tomas
    [J]. MANAGING AND MODELLING OF FINANCIAL RISKS - 5TH INTERNATIONAL SCIENTIFIC CONFERENCE, 2010, : 29 - 36