Visual analytics of brain networks

被引:24
|
作者
Li, Kaiming [1 ,2 ,3 ]
Guo, Lei [3 ]
Faraco, Carlos [2 ,4 ]
Zhu, Dajiang [1 ,2 ]
Chen, Hanbo [1 ,2 ]
Yuan, Yixuan [3 ]
Lv, Jinglei [3 ]
Deng, Fan [1 ,2 ]
Jiang, Xi [1 ,2 ]
Zhang, Tuo [3 ]
Hu, Xintao [3 ]
Zhang, Degang [3 ]
Miller, L. Stephen [2 ,4 ,5 ]
Liu, Tianming [1 ,2 ]
机构
[1] Univ Georgia, Dept Comp Sci, Athens, GA 30602 USA
[2] Univ Georgia, Bioimaging Res Ctr, Athens, GA 30602 USA
[3] Northwestern Polytech Univ, Sch Automat, Xian, Peoples R China
[4] Univ Georgia, Dept Neurosci, Athens, GA 30602 USA
[5] Univ Georgia, Dept Psychol, Athens, GA 30602 USA
基金
美国国家科学基金会;
关键词
Multimodal neuroimaging; Joint modeling; Visual analytics; Visualization and interaction; Brain networks; FUNCTIONAL CONNECTIVITY; ALZHEIMERS-DISEASE; FMRI; SEGMENTATION; REGISTRATION; MRI; DTI; VISUALIZATION; DISORDER; SURFACE;
D O I
10.1016/j.neuroimage.2012.02.075
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Identification of regions of interest (ROIs) is a fundamental issue in brain network construction and analysis. Recent studies demonstrate that multimodal neuroimaging approaches and joint analysis strategies are crucial for accurate, reliable and individualized identification of brain ROIs. In this paper, we present a novel approach of visual analytics and its open-source software for ROI definition and brain network construction. By combining neuroscience knowledge and computational intelligence capabilities, visual analytics can generate accurate, reliable and individualized ROIs for brain networks via joint modeling of multimodal neuroimaging data and an intuitive and real-time visual analytics interface. Furthermore, it can be used as a functional ROI optimization and prediction solution when fMRI data is unavailable or inadequate. We have applied this approach to an operation span working memory fMRI/DTI dataset, a schizophrenia DTI/resting state fMRI (R-fMRI) dataset, and a mild cognitive impairment DTI/R-fMRI dataset, in order to demonstrate the effectiveness of visual analytics. Our experimental results are encouraging. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:82 / 97
页数:16
相关论文
共 50 条
  • [1] Detangler: Visual Analytics for Multiplex Networks
    Renoust, B.
    Melancon, G.
    Munzner, T.
    [J]. COMPUTER GRAPHICS FORUM, 2015, 34 (03) : 321 - 330
  • [2] Tasks for Visual Analytics in Multilayer Networks
    Zhang Xitao
    Wu Lingda
    Hu Huaquan
    Yu Shaobo
    [J]. 2017 IEEE SECOND INTERNATIONAL CONFERENCE ON DATA SCIENCE IN CYBERSPACE (DSC), 2017, : 368 - 371
  • [3] Review: visual analytics of climate networks
    Nocke, T.
    Buschmann, S.
    Donges, J. F.
    Marwan, N.
    Schulz, H. -J.
    Tominski, C.
    [J]. NONLINEAR PROCESSES IN GEOPHYSICS, 2015, 22 (05) : 545 - 570
  • [4] A Survey on the Visual Analytics of Multivariate Networks
    Liu, Yuhua
    Ni, Lushan
    Zhou, Zhiguang
    [J]. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2020, 32 (10): : 1594 - 1605
  • [5] A Framework for Visual Analytics of Massive Complex Networks
    Hong, Seok-Hee
    Huang, Weidong
    Misue, Kazuo
    Quan, Wu
    [J]. 2014 INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2014, : 22 - +
  • [6] NEVA: Visual Analytics to Identify Fraudulent Networks
    Leite, Roger A.
    Gschwandtner, Theresia
    Miksch, Silvia
    Gstrein, Erich
    Kuntner, Johannes
    [J]. COMPUTER GRAPHICS FORUM, 2020, 39 (06) : 344 - 359
  • [7] CNNPruner: Pruning Convolutional Neural Networks with Visual Analytics
    Li, Guan
    Wang, Junpeng
    Shen, Han-Wei
    Chen, Kaixin
    Shan, Guihua
    Lu, Zhonghua
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (02) : 1364 - 1373
  • [8] RCAnalyzer: visual analytics of rare categories in dynamic networks
    Jia-cheng Pan
    Dong-ming Han
    Fang-zhou Guo
    Da-wei Zhou
    Nan Cao
    Jing-rui He
    Ming-liang Xu
    Wei Chen
    [J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21 : 491 - 506
  • [9] RCAnalyzer: visual analytics of rare categories in dynamic networks
    Pan, Jia-cheng
    Han, Dong-ming
    Guo, Fang-zhou
    Zhou, Da-Wei
    Cao, Nan
    He, Jing-rui
    Xu, Ming-liang
    Chen, Wei
    [J]. FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2020, 21 (04) : 491 - 506
  • [10] Visual Analytics in Explaining Neural Networks with Neuron Clustering
    Alicioglu, Gulsum
    Sun, Bo
    [J]. AI, 2024, 5 (02) : 465 - 481