Single nanowire AlN/GaN double barrier resonant tunneling diodes with bipolar tunneling at room and cryogenic temperatures

被引:6
|
作者
Shao, Ye [1 ]
Carnevale, Santino D. [1 ]
Sarwar, A. T. M. G. [1 ]
Myers, Roberto C. [1 ,2 ]
Lu, Wu [1 ]
机构
[1] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA
来源
基金
美国国家科学基金会;
关键词
NEGATIVE DIFFERENTIAL RESISTANCE; MOLECULAR-BEAM EPITAXY; GAN;
D O I
10.1116/1.4829432
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
III-N semiconductor resonant tunneling diodes (RTDs) have attracted great research interest because of their potential high speed performance. Thin film III-N RTDs arc challenging due to high dislocation densities resulted from large lattice and thermal expansion coefficient mismatches to substrates. Here the authors present the growth and fabrication of AlN/GaN double barrier nanowire RTDs. The AlN/GaN double barrier nanowire RTDs show clear negative differential resistance with an onset voltage between 3.5 V and 4.5 V at both room and cryogenic temperatures. The bipolar tunneling- and temperature dependent device performance suggest that the electron transport of these devices is based on resonant tunneling. (C) 2013 American Vacuum Society.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Nanothermometer Based on Resonant Tunneling Diodes: From Cryogenic to Room Temperatures
    Pfenning, Andreas
    Hartmann, Fabian
    Sousa Dias, Mariama Rebello
    Castelano, Leonardo Kleber
    Suessmeier, Christoph
    Langer, Fabian
    Hoefling, Sven
    Kamp, Martin
    Marques, Gilmer Eugenio
    Worschech, Lukas
    Lopez-Richard, Victor
    [J]. ACS NANO, 2015, 9 (06) : 6271 - 6277
  • [2] Tunneling through a GaN/AlN-based double-barrier resonant tunneling heterostructure
    Egorkin, V. I.
    Il'ichev, E. A.
    Zhuravlev, M. N.
    Burzin, S. B.
    Shmelev, S. S.
    [J]. SEMICONDUCTORS, 2014, 48 (13) : 1747 - 1750
  • [3] Tunneling through a GaN/AlN-based double-barrier resonant tunneling heterostructure
    V. I. Egorkin
    E. A. Il’ichev
    M. N. Zhuravlev
    S. B. Burzin
    S. S. Shmelev
    [J]. Semiconductors, 2014, 48 : 1747 - 1750
  • [4] Demonstration of negative differential resistance in GaN/AlN resonant tunneling diodes at room temperature
    Vashaei, Z.
    Bayram, C.
    Razeghi, M.
    [J]. JOURNAL OF APPLIED PHYSICS, 2010, 107 (08)
  • [5] Coaxial nanowire resonant tunneling diodes from non-polar AlN/GaN on silicon
    Carnevale, S. D.
    Marginean, C.
    Phillips, P. J.
    Kent, T. F.
    Sarwar, A. T. M. G.
    Mills, M. J.
    Myers, R. C.
    [J]. APPLIED PHYSICS LETTERS, 2012, 100 (14)
  • [6] N-polar GaN/AlN resonant tunneling diodes
    Cho, YongJin
    Encomendero, Jimy
    Ho, Shao-Ting
    Xing, Huili Grace
    Jena, Debdeep
    [J]. APPLIED PHYSICS LETTERS, 2020, 117 (14)
  • [7] Nanowire resonant tunneling diodes
    Björk, MT
    Ohlsson, BJ
    Thelander, C
    Persson, AI
    Deppert, K
    Wallenberg, LR
    Samuelson, L
    [J]. APPLIED PHYSICS LETTERS, 2002, 81 (23) : 4458 - 4460
  • [8] Demonstration of highly repeatable room temperature negative differential resistance in large area AlN/GaN double-barrier resonant tunneling diodes
    Zhang, HePeng
    Xue, JunShuai
    Fu, YongRui
    Li, LanXing
    Sun, ZhiPeng
    Yao, JiaJia
    Liu, Fang
    Zhang, Kai
    Ma, XiaoHua
    Zhang, JinCheng
    Hao, Yue
    [J]. JOURNAL OF APPLIED PHYSICS, 2021, 129 (01)
  • [9] AlN/GaN double-barrier resonant tunneling diodes grown by metal-organic chemical vapor deposition
    Bayram, C.
    Vashaei, Z.
    Razeghi, M.
    [J]. APPLIED PHYSICS LETTERS, 2010, 96 (04)
  • [10] Large Area GaN/AlN Nanowire Resonant Tunneling Devices on Silicon
    Fathololoumi, S.
    Zhao, S.
    Nguyen, H. P. T.
    Djavid, M.
    Shih, I.
    Mi, Z.
    [J]. 2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,