Large-scale 6D Object Pose Estimation Dataset for Industrial Bin-Picking

被引:0
|
作者
Kleeberger, Kilian [1 ]
Landgraf, Christian [1 ]
Huber, Marco F. [2 ,3 ]
机构
[1] Fraunhofer Inst Mfg Engn & Automat IPA, Dept Robot & Assist Syst, Nobelstr 12, D-70569 Stuttgart, Germany
[2] Fraunhofer Inst Mfg Engn & Automat IPA, Ctr Cyber Cognit Intelligence CCI, Nobelstr 12, D-70569 Stuttgart, Germany
[3] Univ Stuttgart, Inst Ind Mfg & Management IFF, Allmandring 35, D-70569 Stuttgart, Germany
关键词
D O I
10.1109/iros40897.2019.8967594
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce a new public dataset for 6D object pose estimation and instance segmentation for industrial bin-picking. The dataset comprises both synthetic and real-world scenes. For both, point clouds, depth images, and annotations comprising the 6D pose (position and orientation), a visibility score, and a segmentation mask for each object are provided. Along with the raw data, a method for precisely annotating real-world scenes is proposed. To the best of our knowledge, this is the first public dataset for 6D object pose estimation and instance segmentation for bin-picking containing sufficiently annotated data for learning-based approaches. Furthermore, it is one of the largest public datasets for object pose estimation in general. The dataset is publicly available at http://www.bin-picking.ai/en/dataset.html.
引用
收藏
页码:2573 / 2578
页数:6
相关论文
共 50 条
  • [1] Domain Adaptation on Point Clouds for 6D Pose Estimation in Bin-picking Scenarios
    Zhao, Liang
    Sun, Meng
    Lv, Wei Jie
    Zhang, Xin Yu
    Zeng, Long
    [J]. 2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, IROS, 2023, : 2925 - 2931
  • [2] 6D pose estimation of textureless shiny objects using random ferns for bin-picking
    Rodrigues, Jose Jeronimo
    Kim, Jun-Sik
    Furukawa, Makoto
    Xavier, Joao
    Aguiar, Pedro
    Kanade, Takeo
    [J]. 2012 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2012, : 3334 - 3341
  • [3] Instance segmentation based 6D pose estimation of industrial objects using point clouds for robotic bin-picking
    Zhuang, Chungang
    Li, Shaofei
    Ding, Han
    [J]. ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2023, 82
  • [4] 6D Pose Estimation for Bin-Picking based on Improved Mask R-CNN and DenseFusion
    Wang, Hesheng
    Situ, Huajie
    Zhuang, Chungang
    [J]. 2021 26TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2021,
  • [5] StereOBJ-1M: Large-scale Stereo Image Dataset for 6D Object Pose Estimation
    Liu, Xingyu
    Iwase, Shun
    Kitani, Kris M.
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 10850 - 10859
  • [6] Fast Object Pose Estimation Using Adaptive Threshold for Bin-Picking
    Yan, Wu
    Xu, Zhihao
    Zhou, Xuefeng
    Su, Qianxin
    Li, Shuai
    Wu, Hongmin
    [J]. IEEE ACCESS, 2020, 8 (08): : 63055 - 63064
  • [7] OBJECT DETECTION AND AUTOENCODER-BASED 6D POSE ESTIMATION FOR HIGHLY CLUTTERED BIN PICKING
    Hoefer, Timon
    Shamsafar, Faranak
    Benbarka, Nuri
    Zell, Andreas
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 704 - 708
  • [8] Data-Driven Object Pose Estimation in a Practical Bin-Picking Application
    Kozak, Viktor
    Sushkov, Roman
    Kulich, Miroslav
    Preucil, Libor
    [J]. SENSORS, 2021, 21 (18)
  • [9] RobotP: A Benchmark Dataset for 6D Object Pose Estimation
    Yuan, Honglin
    Hoogenkamp, Tim
    Veltkamp, Remco C.
    [J]. SENSORS, 2021, 21 (04) : 1 - 26
  • [10] PPR-Net:Point-wise Pose Regression Network for Instance Segmentation and 6D Pose Estimation in Bin-picking Scenarios
    Dong, Zhikai
    Liu, Sicheng
    Zhou, Tao
    Cheng, Hui
    Zeng, Long
    Yu, Xingyao
    Liu, Houde
    [J]. 2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 1773 - 1780