Realizing multiple-qubit entangling gate in Rydberg atoms via soft quantum control

被引:2
|
作者
Yun, Meng-Ru [1 ,2 ]
Cheng, Shuming [3 ,4 ,5 ]
Yan, L. -L [1 ,2 ,6 ]
Jia, Y. [2 ,7 ,8 ]
Su, S. -L. [1 ,2 ,6 ]
机构
[1] Zhengzhou Univ, Int Lab Quantum Funct Mat Henan, Zhengzhou 450001, Peoples R China
[2] Zhengzhou Univ, Sch Phys & Microelect, Zhengzhou 450001, Peoples R China
[3] Tongji Univ, Dept Control Sci & Engn, Shanghai 201804, Peoples R China
[4] Tongji Univ, Shanghai Inst Intelligent Sci & Technol, Shanghai 201804, Peoples R China
[5] Tongji Univ Shanghai, Inst Adv Study, Shanghai 200092, Peoples R China
[6] Zhengzhou Univ, Sch Phys & Microelect, Key Lab Mat Phys, Minist Educ, Zhengzhou 450001, Peoples R China
[7] Henan Univ, Key Lab Special Funct Mat, Minist Educ, Kaifeng 475001, Peoples R China
[8] Henan Univ, Sch Mat & Engn, Kaifeng 475001, Peoples R China
基金
中国国家自然科学基金;
关键词
FIDELITY; COMMUNICATION; BLOCKADE;
D O I
10.1209/0295-5075/aca69a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Entangling gates are important for the generation of entanglement in quantum communicational and computational tasks. In this work, we propose an efficient protocol to realize the multi-qubit entangling gates with high fidelity in Rydberg atoms. Particularly, we apply the technique of soft quantum control to design the off-resonant pulses such that the atoms are driven to the ground-state subspace via unconventional Rydberg pumping. Thus, our scheme is insensitive to the decay effect as all atoms are only virtually excited. Moreover, Gaussian temporal modulation is further adopted to improve its robustness against the model uncertainty, such as operating time and environment noise. Finally, we perform numerical simulation to validate the effectiveness of our scheme. Hence, our work has potential applications in quantum information processing based on Rydberg atoms. Copyright (C) 2022 EPLA
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Multiple-qubit Rydberg quantum logic gate via dressed-state scheme
    He, Yucheng
    Liu, Jing-Xin
    Guo, F-Q
    Yan, L-L
    Luo, Ronghui
    Liang, Erjun
    Su, S-L
    Feng, M.
    [J]. OPTICS COMMUNICATIONS, 2022, 505
  • [2] Multiple-qubit nonadiabatic noncyclic geometric quantum computation in Rydberg atoms
    Guo, F-Q
    Zhu, X-Y
    Yun, M-R
    Yan, L-L
    Zhang, Y.
    Jia, Y.
    Su, S-L
    [J]. EPL, 2022, 137 (05)
  • [3] Multiple-Qubit CkUm Logic Gates of Rydberg Atoms via Optimized Geometric Quantum Operations
    Li, Meng
    Li, Jing-Yang
    Guo, Fu-Qiang
    Zhu, Xiao-Yu
    Liang, Erjun
    Zhang, Shou
    Yan, Lei-Lei
    Feng, Mang
    Su, Shi-Lei
    [J]. ANNALEN DER PHYSIK, 2022, 534 (04)
  • [4] Multiple-qubit controlled unitary quantum gate for Rydberg atoms using shortcut to adiabaticity and optimized geometric quantum operations
    Li, Meng
    Guo, F-Q
    Jin, Z.
    Yan, L-L
    Liang, E-J
    Su, S-L
    [J]. PHYSICAL REVIEW A, 2021, 103 (06)
  • [5] One-step construction of the multiple-qubit Rydberg controlled-PHASE gate
    Su, S. L.
    Shen, H. Z.
    Liang, Erjun
    Zhang, Shou
    [J]. PHYSICAL REVIEW A, 2018, 98 (03)
  • [6] Entangling quantum gate in trapped ions via Rydberg blockade
    Li, Weibin
    Lesanovsky, Igor
    [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2014, 114 (1-2): : 37 - 44
  • [7] Entangling quantum gate in trapped ions via Rydberg blockade
    Weibin Li
    Igor Lesanovsky
    [J]. Applied Physics B, 2014, 114 : 37 - 44
  • [8] Multiple-Qubit Quantum State Visualization
    Altepeter, J. B.
    Jeffrey, E. R.
    Medic, M.
    Kumar, P.
    [J]. 2009 CONFERENCE ON LASERS AND ELECTRO-OPTICS AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2009), VOLS 1-5, 2009, : 2395 - +
  • [9] Fungible dynamics: There are only two types of entangling multiple-qubit interactions
    Bremner, MJ
    Dodd, JL
    Nielsen, MA
    Bacon, D
    [J]. PHYSICAL REVIEW A, 2004, 69 (01): : 12
  • [10] Fast, Accurate, and Realizable Two-Qubit Entangling Gates by Quantum Interference in Detuned Rabi Cycles of Rydberg Atoms
    Shi, Xiao-Feng
    [J]. PHYSICAL REVIEW APPLIED, 2019, 11 (04)