Oscillation Criterion of Third-order Nonlinear Neutral Damped Functional Differential Equations

被引:0
|
作者
Zeng, Yunhui [1 ]
机构
[1] Hengyang Normal Univ, Dept Math & Computat Sci, Hengyang 421008, Hunan, Peoples R China
关键词
distributed deviating arguments; damped terms; oscillation criterion;
D O I
10.4028/www.scientific.net/AMM.204-208.4835
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, A class of third-order nonlinear neutral damped functional differential equations with distributed deviating arguments are studied. By using a generalized Riccati transformation and Kamenev-type or Philos-type integral averaging technique,we establish some new sufficient conditions which insure that any solution of this equation oscillates or converges to zero.
引用
收藏
页码:4835 / 4839
页数:5
相关论文
共 50 条
  • [1] OSCILLATION OF THIRD-ORDER NEUTRAL DAMPED DIFFERENTIAL EQUATIONS
    Bartusek, Miroslav
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021,
  • [2] Iterative oscillation criteria of third-order nonlinear damped neutral differential equations
    Hassan, Taher S.
    Attia, Emad R.
    El-Matary, Bassant M.
    [J]. AIMS MATHEMATICS, 2024, 9 (08): : 23128 - 23141
  • [3] Oscillation of third-order nonlinear neutral differential equations
    Dosla, Z.
    Liska, P.
    [J]. APPLIED MATHEMATICS LETTERS, 2016, 56 : 42 - 48
  • [4] Oscillation of Third-Order Nonlinear Neutral Differential Equations
    Liska, Petr
    [J]. DIFFERENTIAL AND DIFFERENCE EQUATIONS WITH APPLICATIONS, 2018, 230 : 233 - 245
  • [5] Oscillation of third-order nonlinear damped delay differential equations
    Bohner, Martin
    Grace, Said R.
    Sager, Ilgin
    Tunc, Ercan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2016, 278 : 21 - 32
  • [6] Oscillation Criteria for a Class of Third-Order Damped Neutral Differential Equations
    Elabbasy, Elmetwally M.
    Qaraad, Belgees
    Abdeljawad, Thabet
    Moaaz, Osama
    [J]. SYMMETRY-BASEL, 2020, 12 (12): : 1 - 12
  • [7] Oscillation of third-order neutral differential equations
    Baculikova, B.
    Dzurina, J.
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (1-2) : 215 - 226
  • [8] Oscillation theory of third-order nonlinear functional differential equations
    Graef, John R.
    Saker, Samir H.
    [J]. HIROSHIMA MATHEMATICAL JOURNAL, 2013, 43 (01) : 49 - 72
  • [9] Oscillation criteria for third-order nonlinear functional differential equations
    Aktas, M. F.
    Tiryaki, A.
    Zafer, A.
    [J]. APPLIED MATHEMATICS LETTERS, 2010, 23 (07) : 756 - 762
  • [10] Oscillation criteria for a class of third-order nonlinear neutral differential equations
    Zhong, Jichao
    Ouyang, Zigen
    Zou, Shuliang
    [J]. JOURNAL OF APPLIED ANALYSIS, 2011, 17 (02) : 155 - 163