Double Hopf bifurcation in a container crane model with delayed position feedback

被引:11
|
作者
Ding, Yuting [1 ,2 ]
Jiang, Weihua [1 ]
Yu, Pei [2 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[2] Univ Western Ontario, Dept Appl Math, London, ON N6A 5B7, Canada
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Neutral delayed differential equation; Double Hopf bifurcation; Normal form; Multiple time scales; Center manifold reduction; FUNCTIONAL-DIFFERENTIAL EQUATIONS; BOGDANOV-TAKENS SINGULARITY; PERIODIC-SOLUTIONS; ASYMPTOTIC STABILITY; NORMAL FORMS; NEUTRAL EQUATIONS; MULTIPLE SCALES; OSCILLATOR; PARAMETERS; CRITERION;
D O I
10.1016/j.amc.2013.03.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study dynamics in a container crane model with delayed position feedback, with particular attention focused on non-resonant double Hopf bifurcation. By using multiple time scales and center manifold reduction methods, we obtain the equivalent normal forms near a double Hopf critical point in this neutral delayed differential system. Moreover, bifurcations are classified in a two-dimensional parameter space near the critical point. Numerical simulations are presented to demonstrate the applicability of the theoretical results. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:9270 / 9281
页数:12
相关论文
共 50 条
  • [1] Resonant double Hopf bifurcation in a diffusive Ginzburg–Landau model with delayed feedback
    Yuxuan Huang
    Hua Zhang
    Ben Niu
    [J]. Nonlinear Dynamics, 2022, 108 : 2223 - 2243
  • [2] DOUBLE HOPF BIFURCATION AND CHAOS IN LIU SYSTEM WITH DELAYED FEEDBACK
    Ding, Yuting
    Jiang, Weihua
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2011, 1 (03): : 325 - 349
  • [3] Resonant double Hopf bifurcation in a diffusive Ginzburg-Landau model with delayed feedback
    Huang, Yuxuan
    Zhang, Hua
    Niu, Ben
    [J]. NONLINEAR DYNAMICS, 2022, 108 (03) : 2223 - 2243
  • [4] Resonant 1:2 double Hopf bifurcation in an oscillator with delayed feedback
    Gentile, F. S.
    Itovich, G. R.
    Moiola, J. L.
    [J]. NONLINEAR DYNAMICS, 2018, 91 (03) : 1779 - 1789
  • [5] Resonant 1:2 double Hopf bifurcation in an oscillator with delayed feedback
    F. S. Gentile
    G. R. Itovich
    J. L. Moiola
    [J]. Nonlinear Dynamics, 2018, 91 : 1779 - 1789
  • [6] Stability and Hopf bifurcation of the maglev system with delayed position and speed feedback control
    Zhang, Lingling
    Huang, Lihong
    Zhang, Zhizhou
    [J]. NONLINEAR DYNAMICS, 2009, 57 (1-2) : 197 - 207
  • [7] Stability and Hopf bifurcation of the maglev system with delayed position and speed feedback control
    Lingling Zhang
    Lihong Huang
    Zhizhou Zhang
    [J]. Nonlinear Dynamics, 2009, 57 : 197 - 207
  • [8] Double Hopf bifurcation of time-delayed feedback control for maglev system
    Zhang, Lingling
    Zhang, Zhizhou
    Huang, Lihong
    [J]. NONLINEAR DYNAMICS, 2012, 69 (03) : 961 - 967
  • [9] Double Hopf bifurcation of time-delayed feedback control for maglev system
    Lingling Zhang
    Zhizhou Zhang
    Lihong Huang
    [J]. Nonlinear Dynamics, 2012, 69 : 961 - 967
  • [10] DELAYED FEEDBACK CONTROL NEAR HOPF BIFURCATION
    Atay, Fatihcan M.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2008, 1 (02): : 197 - 205