Finite element approximations of Green function Gx0ε based on the method of multiscale asymptotic expansions

被引:2
|
作者
He, WM [1 ]
Lin, CS
Cui, JZ
机构
[1] Wenzhou Univ, Dept Math, Wenzhou 325027, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
finite element algorithm; Green function; the method of multiscale asymptotic expansions; pointwise error estimate;
D O I
10.1016/j.amc.2005.03.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On basis of Fie and Cui [W.-m. He, J.-z. Cui, A pointwise estimate on the l-order approximation of G(x0)(epsilon), IMA Journal of Applied Mathematics 70 (2005) 241-269.], we propose two kinds of effective finite element algorithms to obtain numerical approxinnations of Green function G(x0)(epsilon) defined in R-2 based on the method of multiscale asymptotic expansions; we present their pointwise error estimates and analyse their computer memory and CPU timed finally, we report results from numerical experiments. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:199 / 222
页数:24
相关论文
共 50 条
  • [1] Superconvergence and Asymptotic Expansions for Bilinear Finite Volume Element Approximations
    Nie, Cunyun
    Shu, Shi
    Yu, Haiyuan
    Wu, Juan
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2013, 6 (02): : 408 - 423
  • [2] Superconvergence and asymptotic expansions for linear finite element approximations on crisscross mesh
    Yunqing Huang
    Shi Shu
    Haiyuan Yu
    Science in China Series A: Mathematics, 2004, 47 : 136 - 145
  • [4] Superconvergence and asymptotic expansions for linear finite element approximations on criss-cross mesh
    Huang, YQ
    Shu, S
    Yu, HY
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2004, 47 (Suppl 1): : 136 - 145
  • [5] Multiscale Finite Element Analysis of Linear Magnetic Actuators Using Asymptotic Homogenization Method
    Jaewook Lee
    Multiscale Science and Engineering, 2019, 1 (1) : 70 - 75
  • [6] The Numerical Accuracy Analysis of Asymptotic Homogenization Method and Multiscale Finite Element Method for Periodic Composite Materials
    Dong, Hao
    Nie, Yufeng
    Yang, Zihao
    Zhang, Yang
    Wu, Yatao
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2016, 111 (05): : 395 - 419
  • [7] A Green-function-based multiscale method for uncertainty quantification of finite body random heterogeneous materials
    Xu, X. Frank
    Chen, Xi
    Shen, Lihua
    COMPUTERS & STRUCTURES, 2009, 87 (21-22) : 1416 - 1426
  • [8] A finite element recovery approach to Green's function approximations with applications to electrostatic potential computation
    Yang, Ying
    Zhou, Aihui
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 225 (01) : 202 - 212
  • [9] MULTISCALE SIMULATION OF MICROCRACK BASED ON A NEW ADAPTIVE FINITE ELEMENT METHOD
    Xu, Yun
    Chen, Jun
    Chen, Dong Quan
    Sun, Jin Shan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (15-16): : 2719 - 2724
  • [10] Finite element method edge detection algorithm based on multiscale fields
    School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
    不详
    J. Comput. Inf. Syst., 2007, 4 (1417-1424):