Consistency of the jackknife-after-bootstrap variance estimator for the bootstrap quantiles of a studentized statistic

被引:4
|
作者
Lahiri, SN [1 ]
机构
[1] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
来源
ANNALS OF STATISTICS | 2005年 / 33卷 / 05期
关键词
jackknife; block bootstrap; consistency; weak dependence;
D O I
10.1214/009053605000000507
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Efron [J Roy. Statist. Soc. Ser. B 54 (1992) 83-111] proposed a computationally efficient method, called the jackknife-after-bootstrap, for estimating the variance of a bootstrap estimator for independent data. For dependent data, a version of the jackk-iiife-after-bootstrap method has been recently proposed by Lahiri [Econometric Theory 18 (2002) 79-98.]. In this paper it is shown that the jackknife-after-bootstrap estimators of the variance of a bootstrap quantile are consistent for both dependent and independent data. Results from a simulation study are also presented.
引用
收藏
页码:2475 / 2506
页数:32
相关论文
共 47 条