tt* geometry of rank two

被引:4
|
作者
Takahashi, A [1 ]
机构
[1] Kyoto Univ, Math Sci Res Inst, Kyoto 6068502, Japan
关键词
D O I
10.1155/S1073792804133679
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:1099 / 1114
页数:16
相关论文
共 50 条
  • [1] Real rank two geometry
    Seigal, Anna
    Sturmfels, Bernd
    [J]. JOURNAL OF ALGEBRA, 2017, 484 : 310 - 333
  • [2] The twistor geometry of parabolic structures in rank two
    Carlos Simpson
    [J]. Proceedings - Mathematical Sciences, 132
  • [3] The twistor geometry of parabolic structures in rank two
    Simpson, Carlos
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2022, 132 (02):
  • [4] BIRATIONAL GEOMETRY OF THE MUKAI SYSTEM OF RANK TWO AND GENUS TWO
    Hellmann, Isabell
    [J]. DOCUMENTA MATHEMATICA, 2022, 27 : 2691 - 2720
  • [5] FQHE and tt* geometry
    Riccardo Bergamin
    Sergio Cecotti
    [J]. Journal of High Energy Physics, 2019
  • [6] FQHE and tt* geometry
    Bergamin, Riccardo
    Cecotti, Sergio
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (12)
  • [7] tt geometry of modular curves
    Bergamin, Riccardo
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (08)
  • [8] tt*-geometry and pluriharmonic maps
    Schäfer, L
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2005, 28 (03) : 285 - 300
  • [9] tt∗ geometry of modular curves
    Riccardo Bergamin
    [J]. Journal of High Energy Physics, 2019
  • [10] tt*-Geometry and Pluriharmonic Maps
    Lars SchÄfer
    [J]. Annals of Global Analysis and Geometry, 2005, 28 : 285 - 300