Dual-primal algorithm for linear optimization

被引:3
|
作者
Li, Wei [1 ]
机构
[1] Hangzhou Dianzi Univ, Inst Operat Res & Cybernet, Hangzhou 310018, Peoples R China
来源
OPTIMIZATION METHODS & SOFTWARE | 2013年 / 28卷 / 02期
基金
中国国家自然科学基金;
关键词
linear programming; simplex method; dual-primal simplex method; interior point method; single-term KKT system; PIVOT;
D O I
10.1080/10556788.2011.643889
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The purpose of this paper is to present a new approach for solving linear programming, which has some interesting theoretical properties. In each step of the iteration, we trace a direction completely different from primal simplex method, dual simplex method, primal-dual method and interior point method. The new method is impervious to primal degeneracy and can reach a pair of exact primal and dual optimal solutions without purifying process. Numerical results are presented that support our theoretical results and confirm the viability of the approach.
引用
收藏
页码:327 / 338
页数:12
相关论文
共 50 条
  • [1] Dual-primal FETI methods for linear elasticity
    Klawonn, Axel
    Widlund, Olof B.
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (11) : 1523 - 1572
  • [2] An interesting characteristic of phase-1 of dual-primal algorithm for linear programming
    Li, Haohao
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2014, 29 (03): : 497 - 502
  • [3] On the convergence of a dual-primal substructuring method
    Mandel, J
    Tezaur, R
    [J]. NUMERISCHE MATHEMATIK, 2001, 88 (03) : 543 - 558
  • [4] VIVA: A VARIATIONAL IMAGE VECTORIZATION ALGORITHM ON DUAL-PRIMAL GRAPH PAIRS
    He, Yuchen
    Kang, Sung Ha
    Morel, Jean-Michel
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 1285 - 1289
  • [5] Nonsingular Dual-Primal Algorithm for Fuel-Optimal Impulsive Rendezvous
    Kim, Youngkwang
    Park, Sang-Young
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2019, 42 (04) : 737 - 751
  • [6] On the convergence of a dual-primal substructuring method
    Jan Mandel
    Radek Tezaur
    [J]. Numerische Mathematik, 2001, 88 : 543 - 558
  • [7] Linear convergence of a primal-dual algorithm for distributed interval optimization
    Wang, Yinghui
    Wang, Jiuwei
    Song, Xiaobo
    Hu, Yanpeng
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (02): : 857 - 873
  • [8] Dual-primal FETI methods with face constraints
    Klawonn, A
    Widlund, OB
    Dryja, M
    [J]. RECENT DEVELOPMENTS IN DOMAIN DECOMPOSITION METHODS, 2002, 23 : 27 - 40
  • [9] DUAL-PRIMAL METHODS FOR THE CARDIAC BIDOMAIN MODEL
    Zampini, Stefano
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (04): : 667 - 696
  • [10] A scalable dual-primal domain decomposition method
    Farhat, C
    Lesoinne, M
    Pierson, K
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2000, 7 (7-8) : 687 - 714