Mean field forward-backward stochastic differential equations

被引:65
|
作者
Carmona, Rene [1 ]
Delarue, Francois [2 ]
机构
[1] Princeton Univ, Bendheim Ctr Finance, ORFE, Princeton, NJ 08544 USA
[2] Univ Nice Sophia Antipolis, Lab Jean Alexandre Dieudonne, F-06108 Nice 02, France
基金
美国国家科学基金会;
关键词
FBSDEs; Mean Field Interactions; UNIQUENESS; EXISTENCE;
D O I
10.1214/ECP.v18-2446
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The purpose of this note is to provide an existence result for the solution of fully coupled Forward Backward Stochastic Differential Equations (FBSDEs) of the mean field type. These equations occur in the study of mean field games and the optimal control of dynamics of the McKean Vlasov type.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [1] GENERAL COUPLED MEAN-FIELD REFLECTED FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS
    李俊松
    米超
    邢传智
    赵德豪
    [J]. Acta Mathematica Scientia, 2023, (05) : 2234 - 2262
  • [2] General Coupled Mean-Field Reflected Forward-Backward Stochastic Differential Equations
    Junsong Li
    Chao Mi
    Chuanzhi Xing
    Dehao Zhao
    [J]. Acta Mathematica Scientia, 2023, 43 : 2234 - 2262
  • [3] GENERAL COUPLED MEAN-FIELD REFLECTED FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS
    李俊松
    米超
    邢传智
    赵德豪
    [J]. Acta Mathematica Scientia, 2023, 43 (05) : 2234 - 2262
  • [4] Mean-Field Forward-Backward Doubly Stochastic Differential Equations and Related Nonlocal Stochastic Partial Differential Equations
    Zhu, Qingfeng
    Shi, Yufeng
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [5] General Coupled Mean-Field Reflected Forward-Backward Stochastic Differential Equations
    Li, Junsong
    Mi, Chao
    Xing, Chuanzhi
    Zhao, Dehao
    [J]. ACTA MATHEMATICA SCIENTIA, 2023, 43 (05) : 2234 - 2262
  • [6] AN EXPLICIT MULTISTEP SCHEME FOR MEAN-FIELD FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS
    Sun, Yabing
    Yang, Jie
    Zhao, Weidong
    Zhou, Tao
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2022, 40 (04) : 519 - 543
  • [7] Mean-field type forward-backward doubly stochastic differential equations and related stochastic differential games
    Qingfeng Zhu
    Lijiao Su
    Fuguo Liu
    Yufeng Shi
    Yong’ao Shen
    Shuyang Wang
    [J]. Frontiers of Mathematics in China, 2020, 15 : 1307 - 1326
  • [8] Mean-field type forward-backward doubly stochastic differential equations and related stochastic differential games
    Zhu, Qingfeng
    Su, Lijiao
    Liu, Fuguo
    Shi, Yufeng
    Shen, Yong'ao
    Wang, Shuyang
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (06) : 1307 - 1326
  • [9] Fully Coupled Mean-Field Forward-Backward Stochastic Differential Equations and Stochastic Maximum Principle
    Min, Hui
    Peng, Ying
    Qin, Yongli
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [10] Forward-backward stochastic differential equations with monotone functionals and mean field games with common noise
    Ahuja, Saran
    Ren, Weiluo
    Yang, Tzu-Wei
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (10) : 3859 - 3892