Development of a CNN plus LSTM Hybrid Neural Network for Daily PM2.5 Prediction

被引:11
|
作者
Kim, Hyun S. [1 ]
Han, Kyung M. [1 ]
Yu, Jinhyeok [1 ]
Kim, Jeeho [1 ]
Kim, Kiyeon [1 ]
Kim, Hyomin [1 ]
机构
[1] Gwangju Inst Sci & Technol GIST, Sch Earth Sci & Environm Engn, Gwangju 61005, South Korea
基金
新加坡国家研究基金会;
关键词
artificial neural network; CNN plus LSTM; daily PM2 5 prediction; SHORT-TERM-MEMORY; AIR-POLLUTION; MODEL; EMISSIONS; INVENTORY;
D O I
10.3390/atmos13122124
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A CNN+LSTM (Convolutional Neural Network + Long Short-Term Memory) based deep hybrid neural network was established for the citywide daily PM2.5 prediction in South Korea. The structural hyperparameters of the CNN+LSTM model were determined through comprehensive sensitivity tests. The input features were obtained from the ground observations and GFS forecast. The performance of CNN+LSTM was evaluated by comparison with PM2.5 observations and with the 3-D CTM (three-dimensional chemistry transport model)-predicted PM2.5. The newly developed hybrid model estimated more accurate ambient levels of PM2.5 compared to the 3-D CTM. For example, the error and bias of the CNN+LSTM prediction were 1.51 and 6.46 times smaller than those by 3D-CTM simulation. In addition, based on IOA (Index of Agreement), the accuracy of CNN+LSTM prediction was 1.10-1.18 times higher than the 3-D CTM-based prediction. The importance of input features was indirectly investigated by sequential perturbing input variables. The most important meteorological and atmospheric environmental features were geopotential height and previous day PM2.5. The obstacles of the current CNN+LSTM-based PM2.5 prediction were also discussed. The promising result of this study indicates that DNN-based models can be utilized as an effective tool for air quality prediction.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Prediction of PM2.5 concentration based on a CNN-LSTM neural network algorithm
    Bai, Xuesong
    Zhang, Na
    Cao, Xiaoyi
    Chen, Wenqian
    PEERJ COMPUTER SCIENCE, 2024, 12
  • [2] Prediction of PM2.5 concentration based on a CNN-LSTM neural network algorithm
    Bai, Xuesong
    Zhang, Na
    Cao, Xiaoyi
    Chen, Wenqian
    PEERJ, 2024, 12
  • [3] Pm2.5 Prediction Based On Neural Network
    Wang, Zhencheng
    Long, Zou
    2018 11TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION (ICICTA 2018), 2018, : 44 - 47
  • [4] Prediction of PM2.5 Daily Concentration of Guangzhou Based on Neural Network Algorithms
    Li Z.
    Wei J.
    Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57 (04): : 645 - 652
  • [5] PM2.5 concentration prediction using weighted CEEMDAN and improved LSTM neural network
    Li Zhang
    Jinlan Liu
    Yuhan Feng
    Peng Wu
    Pengkun He
    Environmental Science and Pollution Research, 2023, 30 : 75104 - 75115
  • [6] PM2.5 concentration prediction using weighted CEEMDAN and improved LSTM neural network
    Zhang, Li
    Liu, Jinlan
    Feng, Yuhan
    Wu, Peng
    He, Pengkun
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (30) : 75104 - 75115
  • [7] Enhancing PM2.5 Prediction Using NARX-Based Combined CNN and LSTM Hybrid Model
    Moursi, Ahmed Samy AbdElAziz
    El-Fishawy, Nawal
    Djahel, Soufiene
    Shouman, Marwa A.
    SENSORS, 2022, 22 (12)
  • [8] A Hybrid CNN-LSTM Model for Forecasting Particulate Matter (PM2.5)
    Li, Taoying
    Hua, Miao
    Wu, Xu
    IEEE Access, 2020, 8 : 26933 - 26940
  • [9] A Hybrid CNN-LSTM Model for Forecasting Particulate Matter (PM2.5)
    Li, Taoying
    Hua, Miao
    Wu, Xu
    IEEE ACCESS, 2020, 8 : 26933 - 26940
  • [10] Hourly prediction of PM2.5 concentration in Beijing based on Bi-LSTM neural network
    Mingmin Zhang
    Dihua Wu
    Rongna Xue
    Multimedia Tools and Applications, 2021, 80 : 24455 - 24468