Z-scheme Au@TiO2/Bi2WO6 heterojunction as efficient visible-light photocatalyst for degradation of antibiotics

被引:32
|
作者
Jin, Kejie [1 ]
Qin, Mian [1 ]
Li, Xinyi [1 ]
Wang, Rui [1 ]
Zhao, Yang [1 ]
Wang, Huan [1 ]
机构
[1] Northeast Petr Univ, Coll Chem & Chem Engn, Daqing 163318, Peoples R China
基金
中国博士后科学基金;
关键词
Core-shellAu@TiO2; Au@TiO2; Bi2WO6; heterostructure; Photocatalysis; Z-scheme mechanism; Antibiotic degradation; PERFORMANCE; HYBRID; ENHANCEMENT; COMPOSITES; NITRIDE; REMOVAL;
D O I
10.1016/j.molliq.2022.120017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Semiconductor photocatalysis can be regarded as one of effective strategies to overcome the great chal-lenges encountered with conventional technologies for environmental remediation. In this research, Z-scheme heterostructure composed of core-shell Au@TiO2 nanoparticles and flower-like Bi2WO6 nanosheets has been successfully prepared through the reverse micelle sol-gel method followed by a hydrothermal process. The structural characteristics, chemical compositions and photoelectrochemical properties of this ternary composite photocatalyst (Au@TiO2/Bi2WO6) were further investigated in detail. Benefitted from the synergy of the heterojunction construction and metallic surface plasmon resonance effect, the Au@TiO2/Bi2WO6 with an optimal mass ratio of Au@TiO2 to Bi2WO6 exhibited the significantly enhanced photocatalytic activity for degradation of antibiotics under visible-light irradiation, in which the degradation efficiency of sulfamethoxazole (SMX) and tetracycline hydrochloride (TC) could be up to 96.9% and 95.0% within 75 min, respectively. The reaction rate constant for SMX and TC degradation was calculated to be around 0.0425 min-1 and 0.0314 min-1, which has 7.2 times and 1.9 times enhance-ment compared with single Bi2WO6, respectively. In addition, the cyclic stability and photocatalytic mechanism of Au@TiO2/Bi2WO6 were further verified. Our primary results provide a feasible strategy to develop core-shell heterostructured photocatalysts with superior performance for the efficient removal of low-concentration antibiotics in water.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Enhanced visible-light photocatalytic degradation of oxytetracycline hydrochloride by Z-scheme CuO/Bi2WO6 heterojunction
    Shi, Xu
    Liu, Baohe
    Meng, Guanhua
    Wu, Pingping
    Lian, Jianjun
    Kong, Weifei
    Liu, Ranxu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1002
  • [2] Nanoparticle/Microsphere TiO2/Bi2WO6 Z-scheme Heterojunction with Excellent Visible-light Photocatalytic Performance
    赵梦雪
    LIU Yulin
    LIAO Guosheng
    何金云
    QIN Ningbo
    Journal of Wuhan University of Technology(Materials Science), 2022, 37 (06) : 1114 - 1122
  • [3] A Bi2WO6/Ag2S/ZnS Z-scheme heterojunction photocatalyst with enhanced visible-light photoactivity towards the degradation of multiple dye pollutants
    Mosleh, Soleiman
    Dashtian, Kheibar
    Ghaedi, Mehrorang
    Amiri, Maryam
    RSC ADVANCES, 2019, 9 (52) : 30100 - 30111
  • [4] The BiOBr/Bi/Bi2WO6 photocatalyst with SPR effect and Z-scheme heterojunction synergistically degraded RhB under visible light
    Chen, Xingliang
    Zhao, Binxia
    Ma, Jixian
    Liu, Linxue
    Luo, Haidong
    Wang, Wenjie
    OPTICAL MATERIALS, 2021, 122
  • [5] Z-scheme Bi2WO6/CuBi2O4 heterojunction mediated by interfacial electric field for efficient visible-light photocatalytic degradation of tetracycline
    Yuan, Xiaojie
    Shen, Dongyan
    Zhang, Qiao
    Zou, Hanbo
    Liu, Zili
    Peng, Feng
    CHEMICAL ENGINEERING JOURNAL, 2019, 369 : 292 - 301
  • [6] Mechanochemical synthesis of a Z-scheme Bi2WO6/CuBi2O4 heterojunction and its visible-light photocatalytic degradation of ciprofloxacin
    Li, Zhao
    Chen, Min
    Zhang, Qiwu
    Tao, Dongping
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 845
  • [7] Characterization and photocatalysis of visible light driven Z-scheme Bi2WO6/Bi2MoO6 heterojunction for Rhodamine B degradation
    Ashok, B.
    Ramesh, K.
    Madhu, D.
    Nagesh, T.
    Kumar, B. Vijaya
    Upender, G.
    INORGANIC CHEMISTRY COMMUNICATIONS, 2023, 150
  • [8] Energy band matching Bi2WO6/black-TiO2 Z-scheme heterostructure for the enhanced visible-light photocatalytic degradation of toluene
    Guo, Lina
    Zhang, Jiaqi
    Zhang, Xu
    Wang, Ruyi
    Jia, Yong
    Long, Hongming
    MOLECULAR CATALYSIS, 2023, 550
  • [9] Z-scheme Bi2WO6/KCN heterojunction towards efficient photocatalytic degradation of tetracycline hydrochloride
    Haider, Syed Najeeb-Uz-Zaman
    Qureshi, Waqar Ahmad
    Khan, Shahid
    Ali, Rai Nauman
    Naveed, Ahmad
    Ali, Amjad
    Moradian, Jamile Mohammadi
    Wahab, Rizwan
    Liu, Qinqin
    Yang, Juan
    MATERIALS TODAY SUSTAINABILITY, 2024, 27
  • [10] Synthesis of Bi2MoO6/Bi2Ti2O7 Z-Scheme Heterojunction as Efficient Visible-Light Photocatalyst for the Glycolic Acid Degradation
    Rong, Qianyun
    Zhang, Dapeng
    Li, Ying
    Zha, Zhenxing
    Geng, Xinxiang
    Cui, Shihai
    Yang, Jing
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2019, 19 (12) : 7635 - 7644