High Mobility Epitaxial Graphene for Carbon-based Nanoelectronics

被引:2
|
作者
Berger, Claire [1 ]
Ruan, Ming [1 ]
Palmer, James [1 ]
Hankinson, John [1 ]
Hu, Yike [1 ]
Guo, Zelei [1 ]
Dong, Rui [1 ]
Conrad, Edward [1 ]
de Heer, Walt A. [1 ]
机构
[1] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
来源
ULSI PROCESS INTEGRATION 7 | 2011年 / 41卷 / 07期
基金
美国国家科学基金会;
关键词
FIELD-EFFECT TRANSISTORS; IMPURITY SCATTERING; BACK SCATTERING; GRAPHITE FILMS; BERRYS PHASE; INTERCALATION; DEPENDENCE; NANOTUBES; CRYSTALS; ABSENCE;
D O I
10.1149/1.3633284
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Epitaxial graphene has demonstrated a great potential for carbon-based electronic. Multiple nanoscale devices can be patterned on a scalable platform with high electronic mobility, large conductivity, and conductance modulation by an electrostatic gate. High quality seamless epitaxial graphene layers are grown on the entire surface of SiC substrates by thermal decomposition of the SiC crystal. For multilayer epitaxial graphene grown on the 4H-SiC (000-1) surface, transport and spectroscopy measurements demonstrate an effective decoupling of the adjacent graphene layers due to a non-graphitic ordered rotational stacking. Large switching ratios require a band gap but graphene is a gapless semimetal. Transport gaps have been demonstrated in chemical functionalized graphene and in narrow ribbons. But patterning techniques severely degrade graphene. Transport data on narrow graphene ribbons directly grown on silicon carbide substrate step edges at high temperature indicate reduced edge scattering and open the way to non diffusive electronics.
引用
收藏
页码:43 / 55
页数:13
相关论文
共 50 条
  • [1] Carbon-based materials in nanoelectronics
    Mastrogiovanni, Dan
    Feng, Wenchun
    Feldman, Len
    He, Huixin
    Podzorov, Vitaly
    Gustafsson, Torgny
    Garfunkel, Eric
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [2] Carbon-based Nanomaterial for Nanoelectronics
    Chen, X.
    Lin, A.
    Wei, L.
    Patil, N.
    Wei, H.
    Chen, H-Y
    Mitra, S.
    Wong, H-S P.
    DIELECTRICS IN NANOSYSTEMS -AND- GRAPHENE, GE/III-V, NANOWIRES AND EMERGING MATERIALS FOR POST-CMOS APPLICATIONS 3, 2011, 35 (03): : 259 - 269
  • [3] Carbon-based nanoelectronics: NanoICs with fullerenes
    Lyshevski, SE
    2004 4TH IEEE CONFERENCE ON NANOTECHNOLOGY, 2004, : 382 - 385
  • [4] Interface chemistry in carbon-based nanoelectronics
    Garfunkel, Eric
    Mastrogiovanni, Daniel
    Feng, Wenchun
    He, Huixin
    Feldman, Leonard
    Gustafsson, Torgny
    Xu, Yi
    Podzorov, Vitaly
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [5] Carbon-Based Field-Effect Transistors for Nanoelectronics
    Burghard, Marko
    Klauk, Hagen
    Kern, Klaus
    ADVANCED MATERIALS, 2009, 21 (25-26) : 2586 - 2600
  • [6] Magnetotransport in high mobility epitaxial graphene
    Berger, Claire
    Song, Zhimin
    Li, Xuebin
    Wu, Xiasong
    Brown, Nate
    Maud, Duncan
    Naud, Cecile
    de Heer, Walt A.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2007, 204 (06): : 1746 - 1750
  • [7] Carbon-based cryoelectronics: graphene and carbon nanotube
    Deng, Xiaosong
    Kang, Ning
    Zhang, Zhiyong
    CHIP, 2023, 2 (04):
  • [8] Effects of carbon-based impurities on graphene growth
    Ge, Xiaoming
    Zhang, Yanhui
    Chen, Zhiying
    Liang, Yijian
    Hu, Shike
    Sui, Yanping
    Yu, Guanghui
    Peng, Songang
    Jin, Zhi
    Liu, Xinyu
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (22) : 15419 - 15423
  • [9] Hierarchical Porous Graphene Carbon-Based Supercapacitors
    Huang, Jianlin
    Wang, Junyin
    Wang, Congwei
    Zhang, Huinian
    Lu, Chunxiang
    Wang, Junzhong
    CHEMISTRY OF MATERIALS, 2015, 27 (06) : 2107 - 2113
  • [10] Carbon-based nanomaterials as contacts to graphene nanoribbons
    Ouyang, Yijian
    Guo, Jing
    APPLIED PHYSICS LETTERS, 2010, 97 (26)