Visual Scene Reconstruction Using a Bayesian Learning Framework

被引:2
|
作者
Bourouis, Sami [1 ,2 ]
Bouguila, Nizar [3 ]
Li, Yexing [3 ]
Azam, Muhammad [3 ]
机构
[1] Taif Univ, Coll Comp & Informat Technol, Dept Informat Technol, At Taif, Saudi Arabia
[2] Univ Tunis El Manar, ENIT, LR SITI Lab, Tunis 1002, Tunisia
[3] Concordia Univ, CIISE, Montreal, PQ H3G 1T7, Canada
来源
IMAGE AND SIGNAL PROCESSING (ICISP 2018) | 2018年 / 10884卷
关键词
Mixture of scaled Dirichlet distribution; Bayesian inference; Markov chain Monte Carlo algorithm; Scene reconstruction; GENERALIZED DIRICHLET DISTRIBUTIONS; MIXTURE;
D O I
10.1007/978-3-319-94211-7_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we focus on constructing new flexible and powerful parametric framework for visual data modeling and reconstruction. In particular, we propose a Bayesian density estimation method based upon mixtures of scaled Dirichlet distributions. The consideration of Bayesian learning is interesting in several respects. It allows simultaneous parameters estimation and model selection, it permits also taking uncertainty into account by introducing prior information about the parameters and it allows overcoming learning problems related to overor under-fitting. In this work, three key issues related to the Bayesian mixture learning are addressed which are the choice of prior distributions, the estimation of the parameters, and the selection of the number of components. Moreover, a principled Metropolis-within-Gibbs sampler algorithm for scaled Dirichlet mixtures is developed. Finally, the proposed Bayesian framework is tested on a challenging real-life application namely visual scene reconstruction.
引用
收藏
页码:225 / 232
页数:8
相关论文
共 50 条
  • [1] Model Considerations for Fire Scene Reconstruction Using a Bayesian Framework
    Kurzawski, Andrew
    Cabrera, Jan-Michael
    Ezekoye, Ofodike A.
    FIRE TECHNOLOGY, 2020, 56 (02) : 445 - 467
  • [2] Model Considerations for Fire Scene Reconstruction Using a Bayesian Framework
    Andrew Kurzawski
    Jan-Michael Cabrera
    Ofodike A. Ezekoye
    Fire Technology, 2020, 56 : 445 - 467
  • [3] Learning Bayesian classifiers for scene classification with a visual grammar
    Aksoy, S
    Koperski, K
    Tusk, C
    Marchisio, G
    Tilton, JC
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03): : 581 - 589
  • [4] A Novel Visual Attention Framework using Unsupervised Feature Learning for Road Scene Understanding
    Mao, Yanfen
    Meng, Qingyu
    Chen, Ming
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INFORMATION ENGINEERING FOR MECHANICS AND MATERIALS, 2015, 21 : 1201 - 1204
  • [5] The Visual Turing Test for Scene Reconstruction
    Shan, Qi
    Adams, Riley
    Curless, Brian
    Furukawa, Yasutaka
    Seitz, Steven M.
    2013 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2013), 2013, : 25 - 32
  • [6] A BAYESIAN MODEL FOR SCENE CLASSIFICATION WITH A VISUAL GRAMMAR
    Wang, Xiaoru
    Liu, Jie
    2011 4TH IEEE INTERNATIONAL CONFERENCE ON BROADBAND NETWORK AND MULTIMEDIA TECHNOLOGY (4TH IEEE IC-BNMT2011), 2011, : 310 - 314
  • [7] Abstract description refinement using incremental learning and scene reconstruction
    Bardis, Georgios
    Golfinopoulos, Vassihos
    Miaoulis, Georgios
    Plemenos, Dimitri
    19TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, VOL II, PROCEEDINGS, 2007, : 345 - +
  • [8] A Bayesian framework for reconstruction of accelerated MRI using Graph Cuts
    Raj, Ashish
    Singh, Gurmeet
    Zabih, Ramin
    CONFERENCE RECORD OF THE FORTY-FIRST ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1-5, 2007, : 1879 - +
  • [9] Bayesian Framework for Automatic Image Annotation Using Visual Keywords
    Agrawal, Rajeev
    Wu, Changhua
    Grosky, William
    Fotouhi, Farshad
    UBIQUITOUS COMPUTING AND MULTIMEDIA APPLICATIONS, 2010, 75 : 142 - +
  • [10] Immersive audio-visual scene reproduction using semantic scene reconstruction from 360 cameras
    Hansung Kim
    Luca Remaggi
    Aloisio Dourado
    Teofilo de Campos
    Philip J. B. Jackson
    Adrian Hilton
    Virtual Reality, 2022, 26 : 823 - 838