A New Nodal-Integration-Based Finite Element Method for the Numerical Simulation of Welding Processes

被引:9
|
作者
Jia, Yabo [1 ]
Bergheau, Jean-Michel [1 ]
Leblond, Jean-Baptiste [2 ]
Roux, Jean-Christophe [1 ]
Bouchaoui, Raihane [1 ,3 ]
Gallee, Sebastien [3 ]
Brosse, Alexandre [4 ]
机构
[1] Univ Lyon, LTDS, ENISE, UMR 5513,CNRS, 58 Rue Jean Parot, F-42023 St Etienne 02, France
[2] Sorbonne Univ, Inst Jean Le Rond dAlembert, CNRS, UMR 7190, Tour 65-55,4 Pl Jussieu, F-75252 Paris 05, France
[3] ESI FRANCE, Batiment Le Recamier,70 Rue Robert, F-69006 Lyon, France
[4] FRAMATOME DTIM, 10 Rue Juliette Recamier, F-69456 Lyon 06, France
关键词
nodal integration; welding simulations; volumetric locking; thermal– elastic– plastic behavior; finite element method; TETRAHEDRAL ELEMENT; MESHFREE;
D O I
10.3390/met10101386
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper aims at introducing a new nodal-integration-based finite element method for the numerical calculation of residual stresses induced by welding processes. The main advantage of the proposed method is to be based on first-order tetrahedral meshes, thus greatly facilitating the meshing of complex geometries using currently available meshing tools. In addition, the formulation of the problem avoids any locking phenomena arising from the plastic incompressibility associated with von Mises plasticity and currently encountered with standard 4-node tetrahedral elements. The numerical results generated by the nodal approach are compared to those obtained with more classical simulations using finite elements based on mixed displacement-pressure formulations: 8-node Q1P0 hexahedra (linear displacement, constant pressure) and 4-node P1P1 tetrahedra (linear displacement, linear pressure). The comparisons evidence the efficiency of the nodal approach for the simulation of complex thermal-elastic-plastic problems.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [1] Exact satisfaction of boundary and interface conditions in nodal-integration-based finite element methods
    Jia, Yabo
    Leblond, Jean-Baptiste
    Bergheau, Jean-Michel
    [J]. COMPTES RENDUS MECANIQUE, 2022, 350 (01): : 57 - 83
  • [2] A nodal-integration-based finite element method for solving steady-state nonlinear problems in the loading's comoving frame
    Jia, Yabo
    Leblond, Jean-Baptiste
    Roux, Jean-Christophe
    Bergheau, Jean-Michel
    [J]. ENGINEERING WITH COMPUTERS, 2024,
  • [3] New Possibility in Welding Simulation by Finite Element Method
    Kokot, G.
    John, A.
    Kus, W.
    [J]. MECHANIKA 2010: PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE, 2010, : 251 - 256
  • [4] Numerical simulation of inertia friction welding process by finite element method
    Fu, L
    Duan, LY
    Du, SG
    [J]. WELDING JOURNAL, 2003, 82 (03) : 65S - 70S
  • [5] Phasewise numerical integration of finite element method applied to solidification processes
    Nigro, N
    Huespe, A
    Fachinotti, V
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2000, 43 (07) : 1053 - 1066
  • [6] Comparison of ALE finite element method and adaptive smoothed finite element method for the numerical simulation of friction stir welding
    van der Stelt, A. A.
    Bor, T. C.
    Geijselaers, H. J. M.
    Quak, W.
    Akkerman, R.
    Huetink, J.
    [J]. 14TH INTERNATIONAL CONFERENCE ON MATERIAL FORMING ESAFORM, 2011 PROCEEDINGS, 2011, 1353 : 1290 - 1295
  • [7] Numerical simulation of extrusion processes using the finite-element-method
    Kalz, S
    Kopp, R
    [J]. COMPUTATIONAL PLASTICITY: FUNDAMENTALS AND APPLICATIONS, PTS 1 AND 2, 1997, : 1393 - 1398
  • [8] Numerical simulation of multi-blow forging processes using the explicit time integration finite element method
    Korea Adv. Inst. Sci. and Technol., Taejon, Korea, Republic of
    不详
    [J]. Eng Comput (Swansea Wales), 8 (901-925):
  • [9] Numerical simulation of multi-blow forging processes using the explicit time integration finite element method
    Yoo, YH
    Yang, DY
    Chung, DT
    [J]. ENGINEERING COMPUTATIONS, 1997, 14 (08) : 901 - +
  • [10] NUMERICAL INTEGRATION IN THE TREFFTZ FINITE ELEMENT METHOD
    Rozehnalova, Petra
    [J]. PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 18, 2017, : 97 - 101