Hidden symmetries of weighted lozenge tilings

被引:1
|
作者
Pak, Igor [1 ]
Petrov, Fedor [2 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] St Petersburg State Univ, St Petersburg, Russia
[3] Steklov Math Inst, St Petersburg, Russia
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2020年 / 27卷 / 03期
关键词
HOOK FORMULAS;
D O I
10.37236/9498
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the weighted partition function for lozenge tilings, with weights given by multivariate rational functions originally defined by Morales, Pak and Panova (2019) in the context of the factorial Schur functions. We prove that this partition function is symmetric for large families of regions. We employ both combinatorial and algebraic proofs.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [1] Signed lozenge tilings
    Cook, D., II
    Nagel, Uwe
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (01):
  • [2] Distances on Lozenge Tilings
    Bodini, Olivier
    Fernique, Thomas
    Remila, Eric
    [J]. DISCRETE GEOMETRY FOR COMPUTER IMAGERY, PROCEEDINGS, 2009, 5810 : 240 - +
  • [3] Asymptotics for the number of standard tableaux of skew shape and for weighted lozenge tilings
    Morales, Alejandro H.
    Pak, Igor
    Tassy, Martin
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2022, 31 (04): : 550 - 573
  • [4] Lozenge Tilings with Free Boundaries
    Panova, Greta
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2015, 105 (11) : 1551 - 1586
  • [5] Lozenge Tilings with Free Boundaries
    Greta Panova
    [J]. Letters in Mathematical Physics, 2015, 105 : 1551 - 1586
  • [6] Lozenge Tilings and Hurwitz Numbers
    Jonathan Novak
    [J]. Journal of Statistical Physics, 2015, 161 : 509 - 517
  • [7] Lozenge Tilings and Hurwitz Numbers
    Novak, Jonathan
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2015, 161 (02) : 509 - 517
  • [8] Enumeration of lozenge tilings of punctured hexagons
    Ciucu, M
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1998, 83 (02) : 268 - 272
  • [10] Lozenge Tilings of a Hexagon with a Horizontal Intrusion
    Byun, Seok Hyun
    [J]. ANNALS OF COMBINATORICS, 2022, 26 (04) : 943 - 970