MINI-BATCH STOCHASTIC APPROACHES FOR ACCELERATED MULTIPLICATIVE UPDATES IN NONNEGATIVE MATRIX FACTORISATIONWITH BETA-DIVERGENCE

被引:0
|
作者
Serizel, Romain [1 ]
Essid, Slim [1 ]
Richard, Gael [1 ]
机构
[1] Univ Paris Saclay, LTCI, CNRS, Telecom ParisTech, F-75013 Paris, France
关键词
Nonnegative matrix factorisation; GPGPU; multiplicative rules; online learning; FACTORIZATION; ALGORITHMS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nonnegative matrix factorisation (NMF) with beta-divergence is a popular method to decompose real world data. In this paper we propose mini-batch stochastic algorithms to perform NMF efficiently on large data matrices. Besides the stochastic aspect, the mini-batch approach allows exploiting intensive computing devices such as general purpose graphical processing units to decrease the processing time and in some cases outperform coordinate descent approach.
引用
收藏
页数:6
相关论文
共 4 条