Symmetries of three harmonically trapped particles in one dimension

被引:43
|
作者
Harshman, N. L. [1 ]
机构
[1] American Univ, Dept Phys, Washington, DC 20016 USA
来源
PHYSICAL REVIEW A | 2012年 / 86卷 / 05期
关键词
INTERACTING BOSE-GAS; SYSTEMS; BOSONS;
D O I
10.1103/PhysRevA.86.052122
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a method for solving few-body problems for trapped particles and apply it to three equal-mass particles in a one-dimensional harmonic trap, interacting via a contact potential. By expressing the relative Hamiltonian in Jacobi cylindrical coordinates, i.e., the two-dimensional version of three- body hyperspherical coordinates, we discover an underlying C-6v symmetry. This symmetry simplifies the calculation of energy eigenstates of the full Hamiltonian in a truncated Hilbert space constructed from the trap Hamiltonian eigenstates. Particle superselection rules are implemented by choosing the relevant representations of C-6v. We find that the one-dimensional system shows nearly the full richness of the three-dimensional system, and can be used to understand separability and reducibility in this system and in standard few-body approximation techniques.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Infinite barriers and symmetries for a few trapped particles in one dimension
    Harshman, N. L.
    [J]. PHYSICAL REVIEW A, 2017, 95 (05)
  • [2] Distinguishability, degeneracy, and correlations in three harmonically trapped bosons in one dimension
    Garcia-March, M. A.
    Julia-Diaz, B.
    Astrakharchik, G. E.
    Boronat, J.
    Polls, A.
    [J]. PHYSICAL REVIEW A, 2014, 90 (06):
  • [3] Spectroscopy for a few atoms harmonically trapped in one dimension
    Harshman, N. L.
    [J]. PHYSICAL REVIEW A, 2014, 89 (03):
  • [4] Harmonically trapped inertial run-and-tumble particle in one dimension
    S. N. Bose National Centre for Basic Sciences, Kolkata
    700106, India
    不详
    560089, India
    不详
    560080, India
    [J]. Phys. Rev. E, 2024, 4
  • [5] Quantumness of gravity in harmonically trapped particles
    Kaku, Youka
    Maeda, Shin'ya
    Nambu, Yasusada
    Osawa, Yuki
    [J]. PHYSICAL REVIEW D, 2022, 106 (12)
  • [6] Three and four harmonically trapped particles in an effective-field-theory framework
    Rotureau, J.
    Stetcu, I.
    Barrett, B. R.
    Birse, M. C.
    van Kolck, U.
    [J]. PHYSICAL REVIEW A, 2010, 82 (03):
  • [7] Classical dynamics of harmonically trapped interacting particles
    Dong, Zhiyu
    Moessner, Roderich
    Haque, Masudul
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [8] Quantum motion of three trapped ions in one dimension
    Y.W. Duan
    L. Shi
    M. Feng
    X. Zhu
    [J]. The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 1999, 7 : 191 - 197
  • [9] Quantum motion of three trapped ions in one dimension
    Duan, YW
    Shi, L
    Feng, M
    Zhu, X
    [J]. EUROPEAN PHYSICAL JOURNAL D, 1999, 7 (02): : 191 - 197
  • [10] Harmonically trapped fermions in one dimension: A finite-temperature lattice Monte Carlo study
    Attanasio, Felipe
    Bauer, Marc
    Kapust, Renzo
    Pawlowski, Jan M.
    [J]. PHYSICAL REVIEW A, 2024, 109 (03)