Multiple Object Classification Using Hybrid Saliency Based Descriptors

被引:0
|
作者
Jalilvand, Ali [1 ]
Charkari, Nasrollah Moghadam [1 ]
机构
[1] Tarbiat Modares Univ, IPPP Lab, Dept Elect & Comp Engn, Tehran, Iran
来源
KNOWLEDGE TECHNOLOGY | 2012年 / 295卷
关键词
Image classification; Image categorization; Object recognition; Support Vector Machine; saliency based descriptors; pattern recognition;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose an Automatic approach for multi-object classification, which employs support vector machine (SVM) to create a discriminative object classification technique using view and illumination independent feature descriptors. Support vector machines are suffer from a lack of robustness with respect to noise and require fully labeled training data. So we propose a technique that can cope with these problems and decrease the influence of viewpoint changing or illumination changing of a scene (noise in data) named the saliency-based approach. We will combine the saliency-based descriptors and construct a Feature vector with low noise. The Proposed Automatic method is evaluated on the PASCAL VOC 2007 dataset.
引用
收藏
页码:348 / 351
页数:4
相关论文
共 50 条
  • [1] Fast object classification method based on saliency detection
    Yang Chao
    Wang Zhennan
    Jiang Xuepu
    Yu Hongyan
    Liu Sai
    Deng Liangzhu
    2018 11TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 1, 2018, : 374 - 377
  • [2] Mine classification using a hybrid set of descriptors
    Quidu, I
    Malkasse, JP
    Burel, G
    Vilbé, P
    OCEANS 2000 MTS/IEEE - WHERE MARINE SCIENCE AND TECHNOLOGY MEET, VOLS 1-3, CONFERENCE PROCEEDINGS, 2000, : 291 - 297
  • [3] Texture Classification using Multiple Local Descriptors
    Oraibi, Zakariya A.
    Irio, Morgane
    Hafiane, Adel
    Palaniappan, Kannappan
    2017 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2017,
  • [4] Classification of flying object based on radar data using hybrid
    Mandal, Priti
    Roy, Lakshi Prosad
    Das, Santos Kumar
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 107
  • [5] RGB-D Object Classification Using Covariance Descriptors
    Fehr, Duc
    Beksi, William J.
    Zermas, Dimitris
    Papanikolopoulos, Nikolaos
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 5467 - 5472
  • [6] Attention shift-based multiple saliency object segmentation
    Wu, Chang-Wei
    Zhao, Hou-Qiang
    Cao, Song-Xiao
    Xiang, Ke
    Wang, Xuan-Yin
    JOURNAL OF ELECTRONIC IMAGING, 2016, 25 (05)
  • [7] Saliency based multiple object cosegmentation by ensemble MIML learning
    Li, Bo
    Sun, Zhengxing
    Xu, Junfeng
    Wang, Shuang
    Yu, Peiwen
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (41-42) : 31299 - 31328
  • [8] Saliency based multiple object cosegmentation by ensemble MIML learning
    Bo Li
    Zhengxing Sun
    Junfeng Xu
    Shuang Wang
    Peiwen Yu
    Multimedia Tools and Applications, 2020, 79 : 31299 - 31328
  • [9] GTCLC: leaf classification method using multiple descriptors
    Kalyoncu, Cem
    Toygar, Onsen
    IET COMPUTER VISION, 2016, 10 (07) : 700 - 708
  • [10] Graph model-based salient object detection using objectness and multiple saliency cues
    Ji, Yuzhu
    Zhang, Haijun
    Tseng, Kuo-Kun
    Chow, Tommy W. S.
    Wu, Q. M. Jonathan
    NEUROCOMPUTING, 2019, 323 : 188 - 202