Time series filtering, smoothing and learning using the kernel Kalman filter

被引:0
|
作者
Ralaivola, L [1 ]
d'Alché-Buc, F [1 ]
机构
[1] Univ Aix Marseille 1, CNRS, LIF UMR 6166, F-13453 Marseille 13, France
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a new model, the Kernel Kalman Filter, to perform various nonlinear time series processing. This model is based on the use of Mercer kernel functions in the framework of the Kalman Filter or Linear Dynamical Systems. Thanks to the kernel trick, all the equations involved in our model to perform filtering, smoothing and learning tasks, only require matrix algebra calculus whilst providing the ability to model complex time series. In particular, it is possible to learn dynamics from some nonlinear noisy time series implementing an exact Expectation-Maximization procedure.
引用
收藏
页码:1449 / 1454
页数:6
相关论文
共 50 条
  • [1] Exact initial Kalman filtering and smoothing for nonstationary time series models
    Koopman, SJ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (440) : 1630 - 1638
  • [2] Instantaneous Time Smoothing in GPS Receivers Using Kalman Filter
    Revathi, R.
    Ramesh, K. S.
    Rao, S. Koteswara
    Kiran, K. Uday
    [J]. INFORMATION AND DECISION SCIENCES, 2018, 701 : 289 - 296
  • [3] Nonstationary Time Series Forecasting Using Wavelets and Kernel Smoothing
    Aminghafari, Mina
    Poggi, Jean-Michel
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (03) : 485 - 499
  • [4] Kalman Filter and Time Series
    Fronckova, Katerina
    Prazak, Pavel
    [J]. HRADEC ECONOMIC DAYS, VOL. 9, ISSUE I, 2019, 9 : 225 - 234
  • [5] Smoothing and trend detection in waterbird monitoring data using structural time-series analysis and the Kalman filter
    Soldaat, Leo
    Visser, Hans
    van Roomen, Marc
    van Strien, Arco
    [J]. JOURNAL OF ORNITHOLOGY, 2007, 148 (Suppl 2): : S351 - S357
  • [6] Smoothing and trend detection in waterbird monitoring data using structural time-series analysis and the Kalman filter
    Leo Soldaat
    Hans Visser
    Marc van Roomen
    Arco van Strien
    [J]. Journal of Ornithology, 2007, 148 : 351 - 357
  • [7] On smoothing macroeconomic time series using the modified HP filter
    Choudhary, M. Ali
    Hanif, M. Nadim
    Iqbal, Javed
    [J]. APPLIED ECONOMICS, 2014, 46 (19) : 2205 - 2214
  • [8] The Application of Kernel Smoothing to Time Series Data
    Zhao-jun Wang Yi Zhao Chun-jie Wu Yan-ting Li School of Mathematics
    [J]. Acta Mathematicae Applicatae Sinica, 2006, (02) : 219 - 226
  • [9] The application of kernel smoothing to time series data
    Wang Z.-J.
    Zhao Y.
    Wu C.-J.
    Li Y.-T.
    [J]. Acta Mathematicae Applicatae Sinica, 2006, 22 (2) : 219 - 226
  • [10] Bootstrap of kernel smoothing in nonlinear time series
    Franke, J
    Kreiss, JP
    Mammen, E
    [J]. BERNOULLI, 2002, 8 (01) : 1 - 37