Exponential Stability Analysis of Planar Piecewise-Linear Systems: An Integral Function Approach

被引:6
|
作者
Liu, Kai [1 ]
Yao, Yu [1 ]
Yang, Baoqing [1 ]
Balakrishnan, Venkataramanan [2 ]
Guo, Yang
机构
[1] Harbin Inst Technol, Control & Simulat Ctr, Harbin, Peoples R China
[2] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
基金
中国国家自然科学基金;
关键词
Exponential stability; integral function; piecewise-linear systems; OUTPUT-FEEDBACK; STABILIZATION;
D O I
10.1007/s12555-012-0201-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the exponential stability of continuous-time planar piecewise-linear systems (PPLS). By introducing a novel conception of integral function of PPLS and showing its properties, a sufficient and necessary condition for the exponential stability is derived. Furthermore, the exponential growth rate of system trajectories can be obtained accurately by computing the convergence radius of integral function. The algorithm for computing the integral function is developed and two examples are given to demonstrate the proposed approach.
引用
收藏
页码:203 / 212
页数:10
相关论文
共 50 条
  • [1] Exponential stability analysis of planar piecewise-linear systems: An integral function approach
    Kai Liu
    Yu Yao
    Baoqing Yang
    Venkataramanan Balakrishnan
    Yang Guo
    [J]. International Journal of Control, Automation and Systems, 2012, 10 : 203 - 212
  • [2] Stability Analysis of Discrete-Time Piecewise-Linear Systems: A Generating Function Approach
    Liu, Kai
    Hu, Jianghai
    Yao, Yu
    Yang, Baoqing
    Huo, Xin
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2014, 12 (05) : 1005 - 1010
  • [3] Stability analysis of discrete-time piecewise-linear systems: A generating function approach
    Kai Liu
    Jianghai Hu
    Yu Yao
    Baoqing Yang
    Xin Huo
    [J]. International Journal of Control, Automation and Systems, 2014, 12 : 1005 - 1010
  • [4] Stability Analysis of Periodic Orbits of Nonautonomous Piecewise-Linear Systems by Mapping Approach
    Zhao, Yibo
    Feng, Jiuchao
    Tse, Chi K.
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2009, 56 (11) : 845 - 849
  • [5] Homoclinic Bifurcations in Planar Piecewise-Linear Systems
    Xu, Bin
    Yang, Fenghong
    Tang, Yun
    Lin, Mu
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2013, 2013
  • [6] Robust stability of uncertain piecewise-linear systems: LMI approach
    Abdallah BenAbdallah
    Mohamed Ali Hammami
    Jalel Kallel
    [J]. Nonlinear Dynamics, 2011, 63 : 183 - 192
  • [7] Robust stability of uncertain piecewise-linear systems: LMI approach
    BenAbdallah, Abdallah
    Hammami, Mohamed Ali
    Kallel, Jalel
    [J]. NONLINEAR DYNAMICS, 2011, 63 (1-2) : 183 - 192
  • [8] ANALYSIS OF PIECEWISE-LINEAR SYSTEMS
    KOVALEV, YZ
    [J]. AUTOMATION AND REMOTE CONTROL, 1974, 35 (02) : 175 - 179
  • [9] An integral function approach to the exponential stability of linear time-varying systems
    Yu Yao
    Kai Liu
    Dengfeng Sun
    Venkataramanan Balakrishnan
    Jian Guo
    [J]. International Journal of Control, Automation and Systems, 2012, 10 : 1096 - 1101
  • [10] An Integral Function Approach to the Exponential Stability of Linear Time-Varying Systems
    Yao, Yu
    Liu, Kai
    Sun, Dengfeng
    Balakrishnan, Venkataramanan
    Guo, Jian
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2012, 10 (06) : 1096 - 1101