Thermal expansion of manganese dioxide using high-temperature in situ X-ray diffraction

被引:8
|
作者
Dose, Wesley M. [1 ]
Donne, Scott W. [1 ]
机构
[1] Univ Newcastle, Discipline Chem, Callaghan, NSW 2308, Australia
关键词
ELECTROCHEMICAL PROPERTIES; CATION VACANCIES; MNO2; RUTILE; BATTERIES;
D O I
10.1107/S0021889813017846
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-temperature in situ X-ray diffraction is used to determine the thermal expansion behaviour of manganese dioxide in air at temperatures between 298 and 673 K, the range accessible prior to material decomposition. Two manganese dioxide samples of different origins are investigated to observe the effect of synthesis conditions and resultant material properties on the thermal response.beta-MnO2 prepared by a chemical pathway is found to expand linearly over the temperature window with thermal expansion coefficients (in units of K-1) of alpha(a) = 9.3 (4) x 10(-6), alpha(c) = 7.0 (2) x 10(-6) and beta = 25.6 (8) x 10(-6). Conversely, the thermal expansion of heat-treated electrolytic manganese dioxide is disjointed about 473 K in the a direction and for the overall unit-cell volume, and about 523 K in the c direction. Coefficients are therefore given (in units of K-1) as alpha(a) = 23 (4) x 10(-6) (298-473 K), 10 (3) x 10(-6) (473-673 K); alpha(c) = 0.2 (9) x 10(-6) (298-523 K), 10 (1) x 10(-6) (523-673 K); and beta = 49 (9) x 10(-6) (298-473 K), 26 (5) x 10(-6) (473-673 K).
引用
收藏
页码:1283 / 1288
页数:6
相关论文
共 50 条
  • [1] High-temperature x-ray diffraction measurement of sanidine thermal expansion
    Mackert, JR
    Twiggs, SW
    Williams, AL
    [J]. JOURNAL OF DENTAL RESEARCH, 2000, 79 (08) : 1590 - 1595
  • [2] Anisotropic Thermal Expansion of Barium Hexaferrite Using Dynamic High-temperature X-ray Diffraction
    D. Sriram
    R. L. Snyder
    V. R. W. Amarakoon
    [J]. Journal of Materials Research, 2000, 15 : 1349 - 1353
  • [3] Thermal expansion measurements of nano-graphite using high-temperature X-ray diffraction
    Akikubo, Kazuma
    Kurahashi, Tyler
    Kawaguchi, Sota
    Tachibana, Masaru
    [J]. CARBON, 2020, 169 : 307 - 311
  • [4] Anisotropic thermal expansion of barium hexaferrite using dynamic high-temperature x-ray diffraction
    Sriram, D
    Snyder, RL
    Amarakoon, VRW
    [J]. JOURNAL OF MATERIALS RESEARCH, 2000, 15 (06) : 1349 - 1353
  • [5] Stable lattice thermal expansion of ZIRLO™: High-temperature X-ray diffraction results
    Youn, Young-Sang
    Park, Jeongmi
    Lim, Sang Ho
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2019, 523 : 66 - 70
  • [6] Thermal effect on BaFCl: High-temperature X-ray diffraction
    Kesavamoorthy, R
    Sundarakkannan, B
    Rao, GVN
    Sastry, VS
    [J]. THERMOCHIMICA ACTA, 1997, 307 (02) : 185 - 195
  • [7] In situ high-temperature X-Ray diffraction study of tantalum metal
    Si-Ahmed, Fariza
    Afir, Arezki
    Pialoux, Andre
    Chikh, Houria
    [J]. MAIN GROUP CHEMISTRY, 2023, 22 (03) : 453 - 467
  • [8] The application of the in situ high-temperature X-ray diffraction quantitative analysis
    Xiao, Qiuguo
    Huang, Ling
    Ma, Hui
    Zhao, Xinhua
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2008, 452 (02) : 446 - 450
  • [9] The application of the in situ high-temperature X-ray diffraction quantitative analysis
    Xiao, Qiuguo
    Huang, Ling
    Ma, Hui
    Zhao, Xinhua
    [J]. Journal of Alloys and Compounds, 2008, 452 (02): : 446 - 450
  • [10] Thermal expansion studies of Li2TiO3 by dilatometry and in-situ high-temperature X-ray diffraction
    Shrivastava, Aroh
    Desai, Vyom
    Chaudhuri, Paritosh
    [J]. CERAMICS INTERNATIONAL, 2024, 50 (01) : 1756 - 1763