Similarity of Precursors in Solid-State Synthesis as Text-Mined from Scientific Literature

被引:58
|
作者
He, Tanjin [1 ,2 ]
Sun, Wenhao [2 ]
Huo, Haoyan [1 ,2 ]
Kononova, Olga [1 ,2 ]
Rong, Ziqin [2 ]
Tshitoyan, Vahe [3 ]
Botari, Tiago [4 ]
Ceder, Gerbrand [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] Google LLC, Mountain View, CA 94043 USA
[4] Univ Sao Paulo, Inst Math & Comp Sci, BR-13566590 Sao Carlos, SP, Brazil
基金
美国国家科学基金会;
关键词
PERFORMANCE; CONSTANT; BA;
D O I
10.1021/acs.chemmater.0c02553
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Collecting and analyzing the vast amount of information available in the solid-state chemistry literature may accelerate our understanding of materials synthesis. However, one major problem is the difficulty of identifying which materials from a synthesis paragraph are precursors or are target materials. In this study, we developed a two-step chemical named entity recognition model to identify precursors and targets, based on information from the context around material entities. Using the extracted data, we conducted a meta-analysis to study the similarities and differences between precursors in the context of solid-state synthesis. To quantify precursor similarity, we built a substitution model to calculate the viability of substituting one precursor with another while retaining the target. From a hierarchical clustering of the precursors, we demonstrate that the "chemical similarity" of precursors can be extracted from text data. Quantifying the similarity of precursors helps provide a foundation for suggesting candidate reactants in a predictive synthesis model.y
引用
收藏
页码:7861 / 7873
页数:13
相关论文
共 50 条
  • [1] Text-mined dataset of inorganic materials synthesis recipes
    Kononova, Olga
    Huo, Haoyan
    He, Tanjin
    Rong, Ziqin
    Botari, Tiago
    Sun, Wenhao
    Tshitoyan, Vahe
    Ceder, Gerbrand
    SCIENTIFIC DATA, 2019, 6 (1)
  • [2] Text-mined dataset of inorganic materials synthesis recipes
    Olga Kononova
    Haoyan Huo
    Tanjin He
    Ziqin Rong
    Tiago Botari
    Wenhao Sun
    Vahe Tshitoyan
    Gerbrand Ceder
    Scientific Data, 6
  • [3] A critical reflection on attempts to machine-learn materials synthesis insights from text-mined literature recipes
    Sun, Wenhao
    David, Nicholas
    FARADAY DISCUSSIONS, 2025, 256 (00) : 614 - 638
  • [4] Author Correction: Text-mined dataset of inorganic materials synthesis recipes
    Olga Kononova
    Haoyan Huo
    Tanjin He
    Ziqin Rong
    Tiago Botari
    Wenhao Sun
    Vahe Tshitoyan
    Gerbrand Ceder
    Scientific Data, 6
  • [5] Text-mined dataset of gold nanoparticle synthesis procedures, morphologies, and size entities
    Kevin Cruse
    Amalie Trewartha
    Sanghoon Lee
    Zheren Wang
    Haoyan Huo
    Tanjin He
    Olga Kononova
    Anubhav Jain
    Gerbrand Ceder
    Scientific Data, 9
  • [6] Text-mined dataset of gold nanoparticle synthesis procedures, morphologies, and size entities
    Cruse, Kevin
    Trewartha, Amalie
    Lee, Sanghoon
    Wang, Zheren
    Huo, Haoyan
    He, Tanjin
    Kononova, Olga
    Jain, Anubhav
    Ceder, Gerbrand
    SCIENTIFIC DATA, 2022, 9 (01)
  • [7] The solid-state synthesis of metal nanoparticles from organometallic precursors
    Wostek-Wojciechowska, D
    Jeszka, JK
    Amiens, C
    Chaudret, B
    Lecante, P
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2005, 287 (01) : 107 - 113
  • [8] KINETICS OF SOLID-STATE MULLITE SYNTHESIS FROM ACTIVATED PRECURSORS
    Kosenko, N. F.
    Filatova, N. V.
    Pimkov, Yu. V.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA I KHIMICHESKAYA TEKHNOLOGIYA, 2016, 59 (01): : 36 - +
  • [9] RAPID SYNTHESIS OF GAP AND GAAS FROM SOLID-STATE PRECURSORS
    TREECE, RE
    MACALA, GS
    KANER, RB
    CHEMISTRY OF MATERIALS, 1992, 4 (01) : 9 - 11
  • [10] Text-mined dataset of inorganic materials synthesis recipes (vol 6, 203, 2019)
    Kononova, Olga
    Huo, Haoyan
    He, Tanjin
    Rong, Ziqin
    Botari, Tiago
    Sun, Wenhao
    Tshitoyan, Vahe
    Ceder, Gerbrand
    SCIENTIFIC DATA, 2019, 6 (1)