Micromechanical damping analysis of composite materials using linear viscoelasticity vs the strain energy approach

被引:0
|
作者
Bednarcyk, Brett A. [1 ]
Aboudi, Jacob [2 ]
Arnold, Steven M. [1 ]
机构
[1] NASA Glenn Res Ctr, Cleveland, OH 44135 USA
[2] Tel Aviv Univ, Tel Aviv, Israel
基金
美国国家航空航天局;
关键词
Composite damping; Effective damping properties; Viscoelasticity; HFGMC; Multiscale micromechanics; Boltzmann representation; Interfaces; MODEL;
D O I
10.1016/j.ijsolstr.2022.111958
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The phenomenological strain energy approach for predicting composite damping properties is widely used because of its simplicity. The composite dissipated energy is approximated as the volume average of the local (constituent) loss factor times the local strain energy. Thus, any micromechanics method (e.g., finite element or the high-fidelity generalized method of cells used herein) that can predict the local fields (and thus the strain energy) within a composite can be used to approximate the effective damping properties. In this paper, two more physics-based approaches, the correspondence principle and explicit viscoelastic modeling, are implemented within the two-scale high-fidelity generalized method of cells micromechanics theory and compared with the widely-used strain energy approach. It is shown that all three approaches provide quite similar predictions for the effective damping properties of unidirectional composites. Finally, the presented two-scale micromechanics theory is applied to predict the effective anisotropic damping properties of 2D and 3D woven composites.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] ANALYSIS OF COMPOSITE-MATERIALS - A MICROMECHANICAL APPROACH
    CHEN, D
    CHENG, S
    [J]. JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 1993, 12 (12) : 1323 - 1338
  • [2] The Linear Matching Method applied to composite materials: A micromechanical approach
    Barrera, O.
    Cocks, A. C. F.
    Ponter, A. R. S.
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2011, 71 (06) : 797 - 804
  • [3] Micromechanical models for porous and cellular materials in linear elasticity and viscoelasticity
    El Ghezal, M. I.
    Maalej, Y.
    Doghri, I.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2013, 70 : 51 - 70
  • [4] An alternate unified approach to the micromechanical analysis of composite materials
    Bennett, JG
    Haberman, KS
    [J]. JOURNAL OF COMPOSITE MATERIALS, 1996, 30 (16) : 1732 - 1747
  • [5] Strain energy analysis of composite materials with interleaved viscoelastic damping layers by Ritz method
    Yang, Jiaming
    Zhong, Xiaodan
    Li, Mingjun
    [J]. Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2009, 26 (02): : 206 - 209
  • [6] Linear viscoelasticity of an acrylate IPN, analysis and micromechanical modeling
    Diani, Julie
    Strauch-Hausser, Eleonore
    [J]. SOFT MATTER, 2021, 17 (31) : 7341 - 7349
  • [7] MICROMECHANICAL MODELING OF DAMPING IN DISCONTINUOUS FIBER COMPOSITES USING A STRAIN-ENERGY FINITE-ELEMENT APPROACH
    HWANG, SJ
    GIBSON, RF
    [J]. JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 1987, 109 (01): : 47 - 52
  • [8] A simplified approach to continuous damage of composite materials and micromechanical analysis
    Pavan, Roberto C.
    Creus, Guillermo J.
    Maghous, Samir
    [J]. COMPOSITE STRUCTURES, 2009, 91 (01) : 84 - 94
  • [9] A micromechanical approach to the strength criterion of composite materials
    Barthélémy, JF
    Dormieux, L
    Lemarchand, E
    [J]. COMPUTATIONAL MODELLING OF CONCRETE STRUCTURES, 2003, : 53 - 58
  • [10] Micromechanical enhancement of the macroscopic strain state for advanced composite materials
    Buchanan, David L.
    Gosse, Jonathan H.
    Wollschlager, Jeffrey A.
    Ritchey, Andrew
    Pipes, R. Byron
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2009, 69 (11-12) : 1974 - 1978