Proton transport in water and DNA components: A Geant4 Monte Carlo simulation

被引:8
|
作者
Champion, C. [1 ]
Incerti, S. [1 ]
Tran, H. N. [1 ]
Karamitros, M. [1 ]
Shin, J. I. [2 ]
Lee, S. B. [2 ]
Lekadir, H. [3 ]
Bernal, M. [4 ]
Francis, Z. [5 ]
Ivanchenko, V. [6 ]
Fojon, O. A. [7 ,8 ]
Hanssen, J. [3 ]
Rivarola, R. D. [7 ,8 ]
机构
[1] Univ Bordeaux 1, CNRS IN2P3, CENBG, F-33175 Gradignan, France
[2] Natl Canc Ctr, Proton Therapy Ctr, Goyan, South Korea
[3] Univ Lorraine, Lab Phys Mol & Collis, Nancy, France
[4] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13081970 Campinas, SP, Brazil
[5] Univ St Joseph, Fac Sci, Dept Phys, Beirut, Lebanon
[6] Ecoanalytica, Moscow 119899, Russia
[7] Consejo Nacl Invest Cient & Tecn, Inst Fis Rosario, RA-1033 Buenos Aires, DF, Argentina
[8] Univ Nacl Rosario, RA-2000 Rosario, Santa Fe, Argentina
基金
新加坡国家研究基金会;
关键词
Monte Carlo; Geant4; Geant4-DNA; Nucleobases; Electromagnetic interactions; CROSS-SECTIONS; ENERGY; PREDICTIONS; IONIZATION; TOOLKIT; SINGLE;
D O I
10.1016/j.nimb.2012.12.059
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Accurate modeling of DNA damages resulting from ionizing radiation remains a challenge of today's radiobiology research. An original set of physics processes has been recently developed for modeling the detailed transport of protons and neutral hydrogen atoms in liquid water and in DNA nucleobases using the Geant4-DNA extension of the open source Geant4 Monte Carlo simulation toolkit. The theoretical cross sections as well as the mean energy transfers during the different ionizing processes were taken from recent works based on classical as well as quantum mechanical predictions. Furthermore, in order to compare energy deposition patterns in liquid water and DNA material, we here propose a simplified cellular nucleus model made of spherical voxels, each containing randomly oriented nanometer-size cylindrical targets filled with either liquid water or DNA material (DNA nucleobases) both with a density of 1 g/cm(3). These cylindrical volumes have dimensions comparable to genetic material units of mammalian cells, namely, 25 nm (diameter) x 25 nm (height) for chromatin fiber segments, 10 nm (d) x 5 nm (h) for nucleosomes and 2 nm (d) x 2 nm (h) for DNA segments. Frequencies of energy deposition in the cylindrical targets are presented and discussed. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:165 / 168
页数:4
相关论文
共 50 条
  • [1] Monte Carlo simulations in proton dosimetry with Geant4
    Moravek, Z
    Bogner, L
    [J]. RADIOTHERAPY AND ONCOLOGY, 2005, 76 : S62 - S62
  • [2] Energy Distributions of Particles Generated for Proton Interactions in Water: A Simulation with GEANT4 Monte Carlo Code
    Chen, Y.
    Ahmad, S.
    [J]. MEDICAL PHYSICS, 2008, 35 (06)
  • [3] A framework for Monte Carlo simulation calculations in GEANT4
    Walker, B.
    Figgins, J.
    Comfort, J. R.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 568 (02): : 889 - 895
  • [4] Proton Source Modeling for Geant4 Monte Carlo Simulations
    Barnes, S.
    McAuley, G.
    Wroe, A.
    Slater, J.
    [J]. MEDICAL PHYSICS, 2012, 39 (06) : 3756 - 3757
  • [5] Fano Cavity Test of the Monte Carlo Codes GEANT4 and PENH for Proton Transport
    Sterpin, E.
    Sorriaux, J.
    Vynckier, S.
    Bouchard, H.
    [J]. MEDICAL PHYSICS, 2013, 40 (06)
  • [6] Monte Carlo simulation of the lateral spread for proton beams in voxelized water phantom using GEANT4 platform
    Kaanouch, Othmane
    Krim, Mustapha
    Ghazi, Ismail
    Saidi, Kamal
    Essaidi, El Mehdi
    Tantaoui, Meriem
    Saad, El Madani
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2023, 62 (01)
  • [7] The Geant4 Virtual Monte Carlo
    Hrivnacova, I.
    [J]. INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS 2012 (CHEP2012), PTS 1-6, 2012, 396
  • [8] Monte Carlo simulation of the ELIMED beamline using Geant4
    Pipek, J.
    Romano, F.
    Milluzzo, G.
    Cirrone, G. A. P.
    Cuttone, G.
    Amico, A. G.
    Margarone, D.
    Larosa, G.
    Leanza, R.
    Petringa, G.
    Schillaci, F.
    Scuderi, V.
    [J]. JOURNAL OF INSTRUMENTATION, 2017, 12
  • [9] A computationally efficient moment-preserving Monte Carlo proton transport method in Geant4
    Dixon, D. A.
    Prinja, A. K.
    McCartney, A. P.
    Hughes, H. G.
    [J]. ICRS-13 & RPSD-2016, 13TH INTERNATIONAL CONFERENCE ON RADIATION SHIELDING & 19TH TOPICAL MEETING OF THE RADIATION PROTECTION AND SHIELDING DIVISION OF THE AMERICAN NUCLEAR SOCIETY - 2016, 2017, 153
  • [10] VERIFICATION OF A PROTON THERAPY FACILITY MONTE CARLO SIMULATION BASED ON THE GAMOS/GEANT4 FRAMEWORK
    Lagares, J. I.
    Arce, P.
    Terron, J. A.
    Nieto-Camero, J. J.
    Sansaloni, F.
    Korf, A.
    Romero Exposito, M. T.
    Nunez, L.
    Rodriguez, R.
    Loubser, M.
    Sanchez-Doblado, F.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2011, 99 : S531 - S531