Real-Time Monitoring of Breath Biomarkers with A Magnetoelastic Contactless Gas Sensor: A Proof of Concept

被引:6
|
作者
Pena, Alvaro [1 ,2 ]
Diego Aguilera, Juan [1 ,2 ]
Matatagui, Daniel [1 ,2 ,3 ,4 ]
de la Presa, Patricia [1 ,2 ,3 ]
Horrillo, Carmen [4 ]
Hernando, Antonio [1 ,2 ,5 ,6 ,7 ]
Marin, Pilar [1 ,2 ,3 ]
机构
[1] Univ Complutense Madrid, Inst Magnetismo Aplicado IMA, Las Rozas 28230, Spain
[2] Infraestructuras Ferroviarias UCM ADIF, Las Rozas 28230, Spain
[3] Univ Complutense Madrid UCM, Dept Fis Mat, Madrid 28040, Spain
[4] CSIC, Grp Tecnol Sensores Avanzados SENSAVAN, Inst Tecnol Fis & Informac ITEFI, Madrid 28006, Spain
[5] Donostia Int Phys Ctr, Donostia San Sebastian 20018, Spain
[6] Inst Madrileno Estudios Avanzados IMDEA Nanocienc, Madrid 28049, Spain
[7] Univ Nebrija, Dept Ingn, Madrid 28015, Spain
来源
BIOSENSORS-BASEL | 2022年 / 12卷 / 10期
关键词
remote sensing; gas sensor; breath analysis; magnetoelastic resonance; soft magnets; polyvinylpyrrolidone; nanofiber; humidity; biomarkers; diabetes; VOLATILE ORGANIC-COMPOUNDS; WIRELESS; AMMONIA; TEMPERATURE; BIOSENSOR; NITROGEN;
D O I
10.3390/bios12100871
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In the quest for effective gas sensors for breath analysis, magnetoelastic resonance-based gas sensors (MEGSs) are remarkable candidates. Thanks to their intrinsic contactless operation, they can be used as non-invasive and portable devices. However, traditional monitoring techniques are bound to slow detection, which hinders their application to fast bio-related reactions. Here we present a method for real-time monitoring of the resonance frequency, with a proof of concept for real-time monitoring of gaseous biomarkers based on resonance frequency. This method was validated with a MEGS based on a Metglass 2826 MB microribbon with a polyvinylpyrrolidone (PVP) nanofiber electrospun functionalization. The device provided a low-noise (RMS = 1.7 Hz), fast (<2 min), and highly reproducible response to humidity (Delta f = 46-182 Hz for 17-95% RH), ammonia (Delta f = 112 Hz for 40 ppm), and acetone (Delta f = 44 Hz for 40 ppm). These analytes are highly important in biomedical applications, particularly ammonia and acetone, which are biomarkers related to diseases such as diabetes. Furthermore, the capability of distinguishing between breath and regular air was demonstrated with real breath measurements. The sensor also exhibited strong resistance to benzene, a common gaseous interferent in breath analysis.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Real-time monitoring of breath biomarkers using magnonic wireless sensor based on magnetic nanoparticles
    Aguilera, J. D.
    Arranz, D.
    Pena, A.
    Marin, P.
    Horrillo, M. C.
    de la Presa, P.
    Matatagui, D.
    [J]. SENSING AND BIO-SENSING RESEARCH, 2024, 43
  • [2] Magnetoelastic sensor for real-time monitoring of elastic deformation and fracture alarm
    Hison, C
    Ausanio, G
    Barone, AC
    Iannotti, V
    Pepe, E
    Lanotte, L
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2005, 125 (01) : 10 - 14
  • [3] Real-time monitoring of drug laboratory test interactions: a proof of concept
    van Balveren, Jasmijn A.
    Verboeket-van de Venne, Wilhelmine P. H. G.
    Doggen, Carine J. M.
    Erdem-Eraslan, Lale
    de Graaf, Albert J.
    Krabbe, Johannes G.
    Musson, Ruben E. A.
    Oosterhuis, Wytze P.
    de Rijke, Yolanda B.
    van der Sijs, Heleen
    Tintu, Andrei N.
    Verheul, Rolf J.
    Hoedemakers, Rein M. J.
    Kusters, Ron
    [J]. CLINICAL CHEMISTRY AND LABORATORY MEDICINE, 2022, 60 (02) : 235 - 242
  • [4] Multiplexed Electrochemical Sensor for Real-Time Monitoring of Inflammatory Biomarkers
    Noushin, Tanzila
    Tabassum, Shawana
    [J]. 2021 IEEE SENSORS, 2021,
  • [5] Embroidered wearable Antenna-based sensor for Real-Time breath monitoring
    El Gharbi, Mariam
    Fernandez-Garcia, Raul
    Gil, Ignacio
    [J]. MEASUREMENT, 2022, 195
  • [6] Wearable sensor for real-time monitoring of oxidative stress in simulated exhaled breath
    Bruno, M.G.
    Patella, B.
    Ferraro, M.
    Di Vincenzo, S.
    Pinto, P.
    Torino, C.
    Vilasi, A.
    Giuffrè, M.R.
    Juska, V.B.
    O'Riordan, A.
    Inguanta, R.
    Cipollina, C.
    Pace, E.
    Aiello, G.
    [J]. Biosensors and Bioelectronics: X, 2024, 18
  • [7] A real-time respiratory motion monitoring system using KINECT: Proof of concept
    Xia, Junyi
    Siochi, R. Alfredo
    [J]. MEDICAL PHYSICS, 2012, 39 (05) : 2682 - 2685
  • [8] Contactless Electrical Sensor Based on Resonance Frequency for Real-Time Monitoring of Bacterial Growth
    Haab, Charles A.
    Jaime, Adriano M.
    Silva, Jussiane S.
    Silva, Thaiane M.
    Pinto, Vandre S.
    Barin, Juliano S.
    Menezes, Cristiano R.
    Viegas, Julio
    Michels, Leandro
    [J]. IEEE SENSORS JOURNAL, 2024, 24 (07) : 9326 - 9333
  • [9] Real-Time Contactless Respiration Monitoring From a Radar Sensor Using Image Processing Method
    Han, Weiqiao
    Dai, Shaozhang
    Yuce, Mehmet Rasit
    [J]. IEEE SENSORS JOURNAL, 2022, 22 (19) : 19020 - 19029
  • [10] Real-Time Landslide Monitoring Using Single-Frequency PPP: Proof of Concept
    Lytvyn, Mykhailo
    Poellabauer, Christoph
    Troger, Markus
    Landfahrer, Katrin
    Hoermann, Leander
    Steger, Christian
    [J]. 6TH ESA WORKSHOP ON SATELLITE NAVIGATION TECHNOLOGIES (NAVITEC 2012) AND EUROPEAN WORKSHOP ON GNSS SIGNALS AND SIGNAL PROCESSING, 2012,