The q-Fourier transformation of q-generalized functions

被引:2
|
作者
Ol'shanetskii, MA [1 ]
Rogov, VBK
机构
[1] Moscow State Commun Univ, Inst Theoret & Expt Phys, Moscow, Russia
[2] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
关键词
D O I
10.1070/SM1999v190n05ABEH000403
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A study is made of functions on the lattice generated by the integer powers of q(2), 0 < q < 1. A q-analogue of the Fourier transformation is constructed based on the Jackson integral in the space of generalized functions on the lattice.
引用
收藏
页码:717 / 735
页数:19
相关论文
共 50 条
  • [1] q-generalized representation of the d-dimensional Dirac delta and q-Fourier transform
    Sicuro, Gabriele
    Tsallis, Constantino
    [J]. PHYSICS LETTERS A, 2017, 381 (32) : 2583 - 2587
  • [2] On a general q-Fourier transformation with nonsymmetric kernels
    Askey, RA
    Rahman, M
    Suslov, SK
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 68 (1-2) : 25 - 55
  • [3] The τq-Fourier transform: Covariance and uniqueness
    Kalogeropoulos, Nikolaos
    [J]. MODERN PHYSICS LETTERS B, 2018, 32 (14):
  • [4] Fractional discrete q-Fourier transforms
    Munoz, Carlos A.
    Rueda-Paz, J.
    Bernardo Wolf, Kurt
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (35)
  • [5] Reflections on the q-Fourier transform and the q-Gaussian function
    Plastino, A.
    Rocca, M. C.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (18) : 3952 - 3961
  • [6] The limit transition q->1 of the q-Fourier transform
    Fichtmuller, M
    Weich, W
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (09) : 4683 - 4689
  • [7] New Uses of q-Generalized Janowski Function in q-Bounded Turning Functions
    Shaba, Timilehin Gideon
    Tawfiq, Ferdous M. O.
    Breaz, Daniel
    Cotirla, Luminita-Ioana
    [J]. MATHEMATICS, 2024, 12 (10)
  • [8] q-Generalized Linear Operator on Bounded Functions of Complex Order
    Badar, Rizwan Salim
    Noor, Khalida Inayat
    [J]. MATHEMATICS, 2020, 8 (07)
  • [9] q-WEIERSTRASS TRANSFORM ASSOCIATED WITH THE q-FOURIER BESSEL OPERATOR
    Chefai, Soumaya
    Brahim, Kamel
    [J]. MATEMATICHE, 2016, 71 (02): : 81 - 97
  • [10] Orthogonality and completeness of q-Fourier type systems
    Ismail, MEH
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2001, 20 (03): : 761 - 775