Extension of Bayesian Network Classifiers to Regression Problems

被引:0
|
作者
Fernandez, Antonio [1 ]
Salmeron, Antonio [1 ]
机构
[1] Univ Almeria, Dept Appl Math & Stat, E-04120 Almeria, Spain
关键词
Bayesian networks; Regression; Mixtures of truncated exponentials;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we explore the extension of various Bayesian network classifiers to regression problems where some of the explanatory variables are continuous and some others are discrete. The goal is to compute the posterior distribution of the response variable given the observations, and then use that distribution to give a prediction. The involved distributions are represented as Mixtures of Truncated Exponentials. We test the performance of the proposed models on different datasets commonly used as benchmarks, showing a competitive performace with respect to the state-of-the-art methods.
引用
收藏
页码:83 / 92
页数:10
相关论文
共 50 条
  • [1] On discriminative Bayesian network classifiers and logistic regression
    Roos T.
    Wettig H.
    Grünwald P.
    Myllymäki P.
    Tirri H.
    [J]. Machine Learning, 2005, 59 (03) : 267 - 296
  • [2] Efficient learning of Bayesian network classifiers - An extension to the TAN classifier
    Carvalho, Alexandra M.
    Oliveira, Arlindo L.
    Sagot, Marie-France
    [J]. AI 2007: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2007, 4830 : 16 - +
  • [3] Bayesian network classifiers
    Friedman, N
    Geiger, D
    Goldszmidt, M
    [J]. MACHINE LEARNING, 1997, 29 (2-3) : 131 - 163
  • [4] Bayesian Network Classifiers
    Nir Friedman
    Dan Geiger
    Moises Goldszmidt
    [J]. Machine Learning, 1997, 29 : 131 - 163
  • [5] Bayesian Fuzzy Clustering neural network for regression problems
    Souza, Paulo Vitor de C.
    Guimares, Augusto J.
    Rezende, Thiago Silva
    Araujo, Vanessa Souza
    Silva Araujo, Vinicius Jonathan
    Batista, Lucas Oliveira
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 1492 - 1499
  • [6] Boosted Bayesian network classifiers
    Jing, Yushi
    Pavlovic, Vladimir
    Rehg, James M.
    [J]. MACHINE LEARNING, 2008, 73 (02) : 155 - 184
  • [7] Approximate Bayesian network classifiers
    Slezak, D
    Wróblewski, J
    [J]. ROUGH SETS AND CURRENT TRENDS IN COMPUTING, PROCEEDINGS, 2002, 2475 : 365 - 372
  • [8] Adaptive Bayesian network classifiers
    Castillo, Gladys
    Gama, Joao
    [J]. INTELLIGENT DATA ANALYSIS, 2009, 13 (01) : 39 - 59
  • [9] Comparing Bayesian network classifiers
    Cheng, J
    Greiner, R
    [J]. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 1999, : 101 - 108
  • [10] Boosted Bayesian network classifiers
    Yushi Jing
    Vladimir Pavlović
    James M. Rehg
    [J]. Machine Learning, 2008, 73 : 155 - 184