Enhanced charge extraction of polymer solar cell by solution-processable gold nanoparticles

被引:13
|
作者
Khoo, Si Yun [1 ,2 ]
Yang, Hongbin [1 ]
He, Ziming [1 ]
Miao, Jianwei [1 ]
Leong, Kam Chew [2 ]
Li, Chang Ming [3 ]
Tan, Timothy Thatt Yang [1 ]
机构
[1] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637459, Singapore
[2] Globalfoundries Singapore Pte Ltd, Singapore 738406, Singapore
[3] Southwest Univ, Inst Clean Energy & Adv Mat, Chongqing 400715, Peoples R China
关键词
PHOTOVOLTAIC CELLS; EFFICIENT; OPTIMIZATION; PERFORMANCE; REDUCTION; LAYER;
D O I
10.1039/c3tc30956h
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The utilization of metallic nanoparticles is one of the key strategies to improve the performance of photovoltaic devices. In this work, we elucidate the power conversion efficiency (PCE) enhancement mechanism by gold nanoparticles (Au-NPs) through a bilayer anodic buffer structure in polymer solar cells. The results show that the PCE of the device based on a Au-NP:poly(sodium-4-styrenesulfonate)/V2O5 bilayer buffer exhibits a similar to 16% enhancement compared with the device without Au-NP. By controlling the density of Au-NPs to minimize plasmonic effects, the Au-NP induced enhancement of charge extraction and crystallinity of the photoactive layer were demonstrated for the first time. Our work indicates that the plasmonic effect may not be the only factor that enhances the PCE of polymer solar cells, while providing new insights into the roles of Au-NPs in performance improvement of a bulk-heterojunction polymer solar cell.
引用
收藏
页码:5402 / 5409
页数:8
相关论文
共 50 条
  • [1] Plasmon-enhanced polymer bulk heterojunction solar cells with solution-processable Ag nanoparticles
    闫齐齐
    秦文静
    王超
    宋朋飞
    丁国静
    杨利营
    印寿根
    [J]. Optoelectronics Letters, 2011, 7 (06) : 410 - 414
  • [2] Plasmon-enhanced polymer bulk heterojunction solar cells with solution-processable Ag nanoparticles
    Yan Q.
    Qin W.
    Wang C.
    Song P.
    Ding G.
    Yang L.
    Yin S.
    [J]. Optoelectronics Letters, 2011, 7 (06) : 410 - 414
  • [3] Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles
    Chen, Fang-Chung
    Wu, Jyh-Lih
    Lee, Chia-Ling
    Hong, Yi
    Kuo, Chun-Hong
    Huang, Michael H.
    [J]. APPLIED PHYSICS LETTERS, 2009, 95 (01)
  • [4] Solution-Processable Porous Nanoparticles of a Conjugated Ladder Polymer Network
    Kalin, Alexander J.
    Che, Sai
    Wang, Chenxu
    Mu, Anthony U.
    Duka, E. Meir
    Fang, Lei
    [J]. MACROMOLECULES, 2020, 53 (03) : 922 - 928
  • [5] Solution-processable porous organic polymer for tailoring the charge transport property of planar perovskite solar cells
    Lim, Jihyun
    Kim, Min-Sung
    Jang, Woongsik
    Wang, Dong Hwan
    Park, Jin Kuen
    [J]. DYES AND PIGMENTS, 2020, 178
  • [6] Solution-Processable Organic Solar Cells
    Brabec, Christoph J.
    Ameri, Tayebeh
    [J]. JOURNAL OF PHOTONICS FOR ENERGY, 2015, 5
  • [7] Solution-Processable ZnO/Carbon Quantum Dots Electron Extraction Layer for Highly Efficient Polymer Solar Cells
    Zhang, Ruqin
    Zhao, Min
    Wang, Zhongqiang
    Wang, Zongtao
    Zhao, Bo
    Miao, Yanqin
    Zhou, Yingjuan
    Wang, Hua
    Hao, Yuying
    Chen, Guo
    Zhu, Furong
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (05) : 4895 - 4903
  • [8] Solution-Processable Zinc Oxide for the Polymer Solar Cell Based on P3HT:PCBM
    Kim, Jun Young
    Noh, Seunguk
    Lee, Donggu
    Nayak, Pradipta K.
    Hong, Yongtaek
    Lee, Changhee
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2011, 11 (07) : 5995 - 6000
  • [9] Enhanced charge separation in chlorophyll a solar cell by gold nanoparticles
    Barazzouk, S
    Hotchandani, S
    [J]. JOURNAL OF APPLIED PHYSICS, 2004, 96 (12) : 7744 - 7746
  • [10] Solution-Processable Hyperbranched Conjugated Polymer Nanoparticles Based on C3h-Symmetric Benzotrithiophene for Polymer Solar Cells
    Wu, Xiaofu
    Zhang, Zijian
    Hang, Hao
    Chen, Yonghong
    Xu, Yuxiang
    Tong, Hui
    Wang, Lixiang
    [J]. MACROMOLECULAR RAPID COMMUNICATIONS, 2017, 38 (18)