Estimating and Interpreting Fine-Scale Gridded Population Using Random Forest Regression and Multisource Data

被引:20
|
作者
Zhou, Yun [1 ,2 ]
Ma, Mingguo [1 ,2 ]
Shi, Kaifang [1 ,2 ]
Peng, Zhenyu [3 ]
机构
[1] Southwest Univ, Sch Geog Sci, Minist Educ, Chongqing Jinfo Mt Field Sci Observat & Res Stn K, Chongqing 400715, Peoples R China
[2] Southwest Univ, Chongqing Engn Res Ctr Remote Sensing Big Data Ap, Chongqing 400715, Peoples R China
[3] Chongqing Planning & Design Inst, Chongqing Engn Res Ctr Big Data Applicat Spatial, Chongqing 401120, Peoples R China
基金
中国国家自然科学基金;
关键词
population mapping; points of interest; random forest; urban area; Chongqing; GEOGRAPHICALLY WEIGHTED REGRESSION; URBAN-POPULATION; AREAL INTERPOLATION; NIGHTTIME LIGHT; SATELLITE IMAGERY; CHINA; MODEL; DENSITY; SURFACE;
D O I
10.3390/ijgi9060369
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Gridded population results at a fine resolution are important for optimizing the allocation of resources and researching population migration. For example, the data are crucial for epidemic control and natural disaster relief. In this study, the random forest model was applied to multisource data to estimate the population distribution in impervious areas at a 30 m spatial resolution in Chongqing, Southwest China. The community population data from the Chinese government were used to validate the estimation accuracy. Compared with the other regression techniques, the random forest regression method produced more accurate results (R-2= 0.7469, RMSE = 2785.04 andp< 0.01). The points of interest (POIs) data played a more important role in the population estimation than the nighttime light images and natural topographical data, particularly in urban settings. Our results support the wide application of our method in mapping densely populated cities in China and other countries with similar characteristics.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Fine-scale population mapping on Tibetan Plateau using the ensemble machine learning methods and multisource data
    Zhang, Huiming
    Fu, Jingqiao
    Li, Feixiang
    Chen, Qian
    Ye, Tao
    Zhang, Yili
    Yang, Xuchao
    [J]. ECOLOGICAL INDICATORS, 2024, 166
  • [2] Applications of random forest feature selection for fine-scale genetic population assignment
    Sylvester, Emma V. A.
    Bentzen, Paul
    Bradbury, Ian R.
    Clement, Marie
    Pearce, Jon
    Horne, John
    Beiko, Robert G.
    [J]. EVOLUTIONARY APPLICATIONS, 2018, 11 (02): : 153 - 165
  • [3] Mapping fine-scale population distributions at the building level by integrating multisource geospatial big data
    Yao, Yao
    Liu, Xiaoping
    Li, Xia
    Zhang, Jinbao
    Liang, Zhaotang
    Mai, Ke
    Zhang, Yatao
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2017, 31 (06) : 1220 - 1244
  • [4] Estimating fine-scale visibility in a temperate forest landscape using airborne laser scanning
    Zong, Xin
    Wang, Tiejun
    Skidmore, Andrew K.
    Heurich, Marco
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 103
  • [5] Fine-scale modeling of the urban heat island: A comparison of multiple linear regression and random forest approaches
    Oukawa, Gabriel Yoshikazu
    Krecl, Patricia
    Targino, Admir Creso
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 815
  • [6] Estimating Global Anthropogenic CO2 Gridded Emissions Using a Data-Driven Stacked Random Forest Regression Model
    Zhang, Yucong
    Liu, Xinjie
    Lei, Liping
    Liu, Liangyun
    [J]. REMOTE SENSING, 2022, 14 (16)
  • [7] Towards fine-scale population stratification modeling based on kernel principal component analysis and random forest
    Zhang, Weiwen
    Cheng, Lianglun
    Huang, Guoheng
    [J]. GENES & GENOMICS, 2021, 43 (10) : 1143 - 1155
  • [8] Towards fine-scale population stratification modeling based on kernel principal component analysis and random forest
    Weiwen Zhang
    Lianglun Cheng
    Guoheng Huang
    [J]. Genes & Genomics, 2021, 43 : 1143 - 1155
  • [9] Estimating fine-scale movement rates and habitat preferences using multiple data sources
    Thorson, James T.
    Barbeaux, Steven J.
    Goethel, Daniel R.
    Kearney, Kelly A.
    Laman, Edward A.
    Nielsen, Julie K.
    Siskey, Matthew R.
    Siwicke, Kevin
    Thompson, Grant G.
    [J]. FISH AND FISHERIES, 2021, 22 (06) : 1359 - 1376
  • [10] Bayesian inference of fine-scale recombination rates using population genomic data
    Wang, Ying
    Rannala, Bruce
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2008, 363 (1512) : 3921 - 3930